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Hepatocellular carcinoma (HCC) is a devastating form of liver cancer that accounts for 

80% of liver cancers. HCC has a poor prognosis with five-year survival of less than 12% 

in the United States. We in previous studies have identified Astrocyte Elevated Gene-1 

(AEG-1) as an aberrantly overexpressed gene in many cancers including HCC, regulating 

tumor progression. Microarray studies identified the small transmembrane protein, 

tetraspanin8 (TSPAN8) as a downstream of AEG-1. TSPAN8 belongs to the family of 
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TETRASPANINS with the characteristic of crossing the membrane four times, and 

regulating a wide range of cellular phenomena. TSPAN8 is implicated in metastasis and 

is classified as a metastasis promoting tetraspanin. To understand the role of TSPAN8 in 

the context of AEG-1 regulated tumor progression of HCC, we generated knockdown 

clones of TSPAN8 in AEG-1-8 cell lines (HepG3 cell lines with stable overexpression of 

AEG-1), and analyzed cellular events that mediate metastasis such as migration, invasion 

and in-vivo tumorogenesis. Our in-vitro studies show that knockdown of TSPAN8 in 

AEG-1 overexpressing cells significantly abrogated migration, matrigel invasion, 

proliferation and endothelial cell activation. Moreover, we show that knockdown of 

TSPAN8 significantly inhibited intrahepatic metastasis of orthotopic xenografts in the 

livers of athymic nude mice. TSPAN8 might be a useful diagnostic marker and potential 

therapeutic target for HCC. These findings indicate that upregulation of TSPAN8 might 

be an important event in mediating the oncogenic function of AEG-1.   
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CHAPTER 1: INTRODUCTION 

 

1.1 Hepatocellular Carcinoma (HCC): 

      Hepatocellular Carcinoma (HCC) is a term given to tumors that arise from epithelial cells of 

liver, the hepatocytes. The macroscopic pathology is characterized as scattered, large and 

multinodular tumors (1). HCC represents more than 80% of liver cancers. It is a serious 

worldwide life-threatening morbid illness with poor prognosis. Globally, HCC ranks the fifth in 

cancer prevalence, and the third in cancer reported deaths (2, 3). Gender-wise, HCC frequency is 

considered to be the fifth in males and the seventh in females (4). The likelihood of developing 

HCC is four to five times higher in males than females (4). This gender difference in occurrence 

of HCC is thought to be due to the influence of sex hormones (5, 6).   

     While androgen is believed to enhance the development of Hepatitis B Virus (HBV) triggered 

HCC in HBV transgenic male mice (5, 7, 8), estrogen is believed to reduce the occurrence of 

HCC in female mice upon exposure to the hepatocarcinogen, diethyl-nitrosamine (DEN) (5, 6). 

Recent findings on the regulatory mechanism showed that ligand dependent activation of 

androgen receptor mediates hepatocarcinogenesis via upregulation of cell cycle–related kinase 

(CCRK) in β-catenin dependent manner (9). Androgen pathway was also shown to mediate 

transcription of micro-RNA 216-a that negatively regulates tumor suppressor in lung cancer-1 

gene (TSLC1) messenger RNA (mRNA) (10). However, the regulatory action by which 

androgen and estrogen orchestrate the disparity between sexes is still largely unexplored (5).  

     The number of reported new cases of HCC is escalating each year with a less than 12% five 

years survival rate. The American Cancer Society estimates that in 2012, there will be 28,720 
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new cases and 20,550 reported deaths in the United States (4, 11). Chronic hepatitis B virus 

infection constitutes 50% of HCC cases around the world (4).  

     In contrast, in the United States HCV related HCC is more common than HBV. HCV 

constitutes 48% of the cases compared to 16% of HBV related HCC cases in the United States 

(11, 12). Immigrants from countries, where HBV is endemic account for most of the HBV 

related HCC cases in the United States (12). The remaining percentage of cases is unequally 

scattered around risk modifying diseases such as alcohol related liver disease and metabolic 

syndromes (11, 13). However, HCV, alcohol related liver disease and non-alcoholic fatty liver 

disease (NAFLD) tend to be common risk factors in the United States (4, 11).  

     HCC is not a population specific illness. However, recent statistical data on incidence of HCC 

show that Caucasians, Hispanics and African Americans have a higher incidence than others in 

the United States, and HCV related HCC accounts for most of the cases (11). The incidence of 

HCC in the United States has increased from 1.6 to 4.9 (more than 200% increase) cases per 

100,000 of U.S. population from 1975 to 2005 (14).  Knowing that HCV related HCC manifests 

mostly at the age of 70 (4), the increase of HCV related HCC in US- citizens might be linked to 

the time where drug abuse was prevalent (more the 30 years ago), which could be explained by 

the cohort study of HCV infected patients due to sharing needles for drug abuse (2, 15). HCC is a 

highly heterogeneous type of cancer, which might be due to the diversity and increased number 

of etiological factors (16). The majority of risk factors lead to chronic liver disease that later 

progress to HCC. Patients with HCC have an extremely low health related quality of life 

(HRQL), which is a marker that was proposed to be considered when assessing prognosis of 

HCC, compared to chronic liver disease (4, 17). 

1.1.1 Risk Factors:  
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     A recent epidemiological review on Hepatocellular Carcinoma (HCC) showed that when 

geographical location and the population of hepatocellular carcinoma patients are taken into 

account, we would expect to see diverse and increased sets of risk factors because of the 

variability in environmental and socio-economic statuses, which might explain the heterogeneity 

and the complexity seen in HCC (2, 4, 16, 18). For instance, if we compare China to the United 

States, we would see that HBV and Alfatoxin B1, a mycotoxin produced from Aspergillus flavus, 

are more common risks for HCC in China than the United States (2).  

     This is due to the fact that HBV is endemic in Asia but not in the United States. The warm 

weather and the inappropriate storage and cleaning of cereals such as rice creates a favorable 

environment for growth of molds that secret Alfatoxin B1; a food contaminant the metabolite of 

which is carcinogenic (4, 19-23). Most risk factors induce chronic liver disease, which lead to 

fibrosis, cirrhosis and eventually HCC. In fact, more than 80% of HCC cases arise from a 

cirrhotic microenvironment (11, 15, 19, 24, 25).  

     According to a recent review published by El-Serag, the five-year cause dependent 

cumulative risk of HCC in patients with cirrhotic liver is estimated to fall in between 5% to 30% 

with an increased risk in HCV infected patients (4). Moreover, in the United States the common 

modifiers of risk for the development of HCC are HCV, HBV, alcoholic liver disease and non-

alcoholic fatty liver disease (NAFLD) (4). Other uncommon risks include hereditary 

hemochromatosis, alpha1-antitrypsin deficiency, auto-immune hepatitis, porphyrias, and 

Wilson’s disease (4). Here, I will describe the common risk factors for HCC (Figure 1). 
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Figure 1:  

A schematic diagram, representing common risk factors and possible actions on cell behavior 
that initiate the development of Hepatocellular Carcinoma (HCC). Identical colors represent 
same likelihood for the sequence of events. 
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Figure 2:  

A schematic representation of a common theme for the histopathological progression of 
Hepatocellular Carcinoma (HCC). Regardless of the type of risk factor, upon liver injury, an 
endless cycle of proliferation/necrosis is initiated to repair the damaged tissue. This cycle 
predisposes a chronic liver disease with inflammation, which leads to cirrhosis, hyperplasia, 
dysplasia and eventually HCC.   
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Figure 3:  

A world map representing the prevalence of HBV and HCV infection and the age adjusted 

incidence of liver cancer. The figure was adopted from (14).  

 



	   7	  

1.1.1.1 Hepatitis B Virus (HBV): 

     Hepatitis B Virus is classified as a member of the family hepadnaviridae (16). The virus has a 

partial double-stranded DNA, which encompass four open reading frames (ORFs) that encode 

the virus envelope, core protein (HBcAg), virus polymerase, and HBV X protein (26). HBV is 

the most common cause of HCC in countries that have low health care support systems with an 

endemic HBV infection such as Eastern Asia (Figure 3).  

     In Asia, the mother to infant transmission (i.e. vertical) is the most common in HBV 

infection. On the other hand, in the United States or European countries, HBV is transmitted by 

unsafe exchange of body fluids such as unprotected sexual intercourse and sharing needles (14). 

The infection of HBV tends to be acute in most cases; however, in a number of patients the virus 

doesn’t get cleared out of circulation due to its ability to integrate in the genome. Another 

possibility is that the virus can evade the host immune response as a consequence of mutations 

that occur during the virus life cycle. As a result, the persistent integration into the host promotes 

the initiation of a chronic state where inflammation is thought to play a major role in facilitating 

the environment for HCC development. This was shown to be plausible due to host-viral 

interaction.  

     The infection of HBV triggers the immune response to recruit T-lymphocytes. Consequently, 

this might cause hepatocyte necrosis, inflammation and hepatocyte regeneration. The endless 

cycle of necrosis/regeneration to restore the tissue architecture of the liver is thought to initiate 

dysfunctional telomeres and genomic instability which in turn will give rise to dysplastic lesion 

that progress to tumorigenic lesions (16). The available evidence in the literature shows that 

HBV participate in the transformation of hepatocyte to HCC by regulating and interacting with a 

number of genes and signaling pathways that control cell survival, apoptosis and the degradation 
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of various proteins through interaction with components of the ubiquitin-proteasome system 

(27). For instance, the integration of HBV into the genome has been linked with host 

microdeletion of genes (i.e. tumor suppressor genes). Similarly, the viral enhancer elements can 

lead to upregulation of genes that favor the development of limitless proliferation potential such 

as telomerase reverse transcriptase (TERT) (Figure 2), platelet-derived-growth-factor receptor-β 

(PDGFRβ), PDGFβ and mitogen activated protein kinase 1 (MAPK1) (16).  

     Another possible way is that when the virus interacts with the Endoplasmic Reticulum (ER) 

this leads to activation of ER stress and generation of free radicals that cause further mutations 

(Figure 1).  Moreover, it has been shown that HBx, a viral protein with yet unclear function, can 

perturb the expression of a number of genes, which include growth-control genes, such as Src 

tyrosine kinases, Ras, Raf, MAPK, ERK, JNK and a number of other genes (16, 28). Moreover, 

HBx can bind and nullify p53 function, a tumor suppressor gene with multifaceted actions (29). 

In addition it has been shown recently that HBx alters the centrosome replication, which leads to 

rearrangement of chromosomes with micronuclei (28).  

     Interestingly, HBx was also implicated to enhance the generation of cancer stem cells that 

will propagate to supply endless number of cells, further strengthening the cell of origin and 

cancer stem cell hypothesis in HCC that might explain the recurrence of HCC due to the inherent 

resistance of cancer stem cells to chemotherapy (30, 31). It also has been proposed that HBV 

might cause epigenetic perturbations through altering histone modifications (32). Through all 

these genetic and epigenetic interactions with different genes and proteins that regulate the 

behavior of the cell, HBV is believed to trigger a cascade of events which include chronic 

inflammation and activation of stellate cells, quiescent cells that when activated provoke 

proliferation and secrete collagen to restore the structural architecture of the liver. The excessive 
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secretion of collagen leads to fibrosis which then progress to cirrhosis and eventually HCC 

(Figure 2) (16).    

 

1.1.1.2 Hepatitis C Virus (HCV):  

     Hepatitis C virus is an enveloped; positive single-stranded RNA virus of the Flaviviridae 

family. (33). The viral genome encodes structural protein such as the core protein and the 

envelope glycoproteins E1 and E2. The non-structural proteins are P7 polypeptide, the NS2-3 

autoprotease and the NS3 serine protease, RNA helicase, NS4A polypeptide, NS4B, NS5A 

proteins, and NS5B RNA-dependent RNA polymerase (21).  

     The viral protein, known as polyprotein gets modified by the complex translation and post-

translational machinery that include the cooperation of the host and viral proteases, which 

facilitate the generation of the viral proteins that mediate hepatocarcinogenesis (reviewed in 

(34)). Similar to HBV, host viral interactions are essential for the viral life cycle and 

hepatocarcinogenesis (33). HCV is one of the common causes of chronic liver disease and HCC 

in the United States.  

     Unlike HBV, HCV is commonly transmitted horizontally through unsafe body fluid exchange 

such as sharing needles and unprotected sexual intercourse (14).  HCV is believed to mostly 

present as a chronic infection and cause chronic liver disease. Patients with HCV infection are 

more likely to develop HCC than patients with HBV and HCV (4). This is because HCV is 

susceptible to mutations in the genome due to inefficient viral polymerase enzyme, which will 

increase the susceptibility to replication errors in the viral replication system. As a result, 

mutations will generate variants of the virus that won’t get recognized by the immune system 

because of variation in epitopes thereby helping the virus to escape the host immune system (16). 
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There is a 10-fold increase in the likelihood for developing liver cirrhosis in HCV compared to 

HBV. It is estimated that a range of 5% to 10% of HCV infected individuals develop cirrhosis 10 

years post infection (35). Unlike HBV, HCV doesn’t integrate into the host genome, and viral 

load and HCV genotype are thought to influence the incidence of HCV-related HCC (21, 36).  

     Moreover, the host genetic background, environment and genetic variations are also thought 

to play a role in facilitating the development of HCC in HCV infected individuals, which might 

explain why only a portion of HCV infected individuals develop HCC (36).  The viral-host 

protein interactions regulate the initiation and development of HCC. The cascade of events that 

drive the transformation of hepatocytes to HCC are mostly similar between HBV and HCV. Both 

trigger chronic liver disease resulting in cirrhotic microenvironment which is thought to drive the 

transformation of hepatocyte to HCC (Figure 2) (21).  

     It is also worth noting that HCV infected patients who do not manifest liver fibrosis or 

manifest mild liver fibrosis are less likely to develop HCC (4). In regard to the difference in 

genetic signatures between HCV and HBV hepatocarcinogenesis, a recent infection related 

micro-RNA (miRNA) expression analysis showed that miRNAs associated with HCV initially 

altered lipid metabolism, cell cycle and the inflammatory pathways, while in HBV primarily 

altered pathways were cell death and DNA repair pathways (37).  

     The HCV driven hepatocarcinogenesis is thought to be through viral proteins (core, NS3, 

NS5A and NS4B) and host interaction, which regulate a multitude of events involved in cell 

signaling, transcriptional regulation, apoptosis membrane rearrangement and translation. 

(reviewed in (21)). While the carcinogenic interaction of HCV core protein with the host DNA is 

still not fully elucidated since HCV does not integrate into the host genome, it has been shown 

that HCV core protein enhances the activity of transcription factors such as, signal transducer 
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and activator of transcription (STAT) 3 and sterol regulatory element-binding protein (SREBP)-

1c, which in turn promote hepatocarcinogenesis. (38). Moreover, HCV core protein has been 

recently shown to induce Vascular Endothelial Growth Factor (VEGF) through upregulation of 

Hypoxia-Inducible Factor-1α (HIF1α) in cirrhotic microenvironment (38).   

     Similar to HBV, HCV core protein has been shown to bind and nullify p53 function, activate 

MAPK, alter Wingless-int (Wnt) pathway and enhance the generation of Reactive Oxygen 

Species (ROS) and cancer stem cells in cell culture and animal models. Phosphorylated 

Retinoblastoma (pRB) protein is also shown to be inactivated by the core protein (21, 39, 40).  

     The envelope protein E2 has been shown to abrogate Protein Kinase R (PKR), which exerts 

resistance to Interferon inhibitory function. Moreover, E2 binds to CD81, a tetraspanin 

transmembrane protein, and leads to the inability to activate T lymphocytic cells and the Natural 

killer cells. The binding of E2 with CD81 has been also shown to modulate the MAPK-ERK 

pathway.  

     The inactivation of the p53 by HCV was also shown to be mediated by the NS3 protein 

trough binding to the C-terminal domain (oligomerization domain) of the wild type p53. NS5A 

viral protein has been proposed to dominate its oncogenic effects through inactivating p53, 

Forkhead transcription factor and the negative phosphorylation of Glycogen synthase kinase 3 

(GSK-3), which lead to nuclear aggregation of β-catenin (21). With all these cytoplasmic and 

nuclear interactions, HCV is believed to initiate a chronic inflammatory state, which facilitates 

the development of HCC. Co-morbidity of Viral induced HCC with other factors such as 

Alfatoxin B1 or chronic alcohol consumption has been shown to reduce onset and promote the 

progression of HCC (14). Moreover, co-infection of HCV in HBV occult patients, which is 
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defined by the absence of HBV antigen but the persistence of HBV DNA in the host, has been 

reported to accelerate the development of HCC (19).  

 

1.1.1.3 Alfatoxin B1:  

     Alfatoxins are a group of fungal toxins that are generally secreted by the fungus Aspergillus 

flavus. Natural common food and feedstuff contaminants aflatoxins are characterized as G1, G2, 

B1 and B2. Alfatoxin B1 (AFB1) is the most toxic and hepatocarcinogenic. When Alfatoxin B1 

is ingested, the microsomal mono-oxygenases in liver oxidizes it. The oxidation of Alfatoxin B1 

generates a carcinogenic metabolite AFB1- exo-8,9-epoxide which can bind to guanine residues 

of the DNA forming AFB1-N7-Gua adducts that are mutagenic with adverse effects (25).  

     Generation of mutagenic/carcinogenic AFB1 has been reported to cause mutations in the 

tumor suppressor p53 (Figure 1) (16),  and activating mutations in Harvey Ras (H-Ras) oncogene 

(41). Farazi et al. speculated that the consequences of the mutagenic AFB1 are enough to initiate 

the development of HCC since there are no well understood links connecting the pre-requirement 

of cirrhotic microenvironment for the development of HCC in AFB1-related HCC cases (16). 

However, co-morbidity with HBV or HCV are possible and this will lead to an increased risk to 

develop HCC (4).  

 

1.1.1.4 Chronic alcohol consumption: 

     Chronic alcohol consumption or heavy alcohol intake is defined by the daily intake of more 

than 60 grams of alcohol. Donato et al examined the association of risk of heavy alcohol intake 

and HCC. The association was seen to be linear with an increase of risk in heavy drinkers 

(>60grams/day) with no significant variations between males and females. The association also 
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seemed to be independent of the occurrence of viral hepatitis. However, the coexistence of 

alcohol and viral hepatitis would escalate the risk (42).  

     The toxicity of ethanol occurs when Alcohol Dehydrogenase type 3 (ADH3), a key enzyme, 

processes the metabolism of ethanol to acetaldehyde. Acetaldehyde is cytotoxic and causes 

hepatocyte damage. Interestingly, Single Nucleotide Polymorphisms (SNPs) near loci harboring 

genes that encode enzymes involved in metabolism of alcohol have been associated with an 

increased risk for some alcohol related carcinogenesis (43).  

     Chronic alcohol consumption has been shown to stimulate the inflammatory immune 

response through Interleukin 6 (IL6), IL1β, Tumor Necrosis Factor α (TNFα) and prostaglandin 

E2 secretion from monocytes. As a result, the inflammatory immune response facilitates 

damaging of hepatocytes. Similar to HBV, the degeneration/regeneration cycle leads to 

propagation of cells harboring mutation in key genes regulating normal homeostasis of 

hepatocytes, activation of stellate cells, fibrosis and eventually hepatocarcinogenesis. Moreover, 

alcohol ingestion was also shown to enhance the generation of oxidative stress, leading to 

fibrosis, genomic instability and mutations that promote HCC  (Figure 1) (16).  
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1.1.1.5 Non-alcoholic fatty liver disease (NAFLD):  

     Obesity is a common morbidity affecting public health in the United States. The percentage of 

overweight and obese (BMI equal or more than 30kg/m2) individuals is estimated to account for 

66% and 32% of the population, respectively (44). The emergence of obesity to the list of risk 

factors for HCC is a relatively recent hypothesis that arose from a number of studies showing 

that approximately 30% to 40% of studied patients with HCC did not have underlying viral 

hepatitis. These studies speculated another shared factor that would increase the risk. In fact, 

studied patients showed a common risk factor that is type 2 diabetes, which is known to be 

influenced by obesity, and another group of patients showed non-alcoholic fatty liver disease (4).  

     The first documentation of HCC as a consequence of NAFLD was in 1990. However, 

available data show that the risk of developing HCC as a consequence of NAFLD is less than 

HCV. The cumulative risk of NAFLD-related HCC is 2.6% as opposed to 4% in HCV-related 

HCC (45). Interestingly, HCV core protein has been shown to promote hepatic steatosis in mice 

(46). In the United States NAFLD is prevalent. The increase in prevalence comes hand in hand 

with the increased rate of obesity in the country. Current estimates predict that obesity will 

become the common risk factor for HCC in the United States as HCV infection is predicted to go 

down in upcoming years (45).  

     NAFLD is a broad name that is associated with type 2 diabetes, insulin resistance and obesity. 

NAFLD is characterized by the excessive deposition of lipid in the liver as a complication of 

obesity. The excessive deposition of lipids due to unbalanced consumption of high calorie diet 

impairs liver function. As a result, the liver synthesizes triglycerides but cannot export them. The 

excessive accumulation of triglycerides in parenchyma of the liver leads to steatosis, which then 

results in low-grade inflammation that progress to Non-Alcoholic Steatohepatitis (NASH).  
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As a consequence, NASH leads to cirrhosis and HCC  (Figure 4) (47). The increased risk to 

HCC in the majority of cases is believed to be due to NASH. It is worth noting that there are 

variations in the ramifications of NAFLD (i.e. hepatosteatosis) among U.S. population. For 

example, African Americans tend to have lower prevalence of Non-Alcoholic Steatohepatitis 

(NASH) compared to non-Hispanic whites and Hispanics due to genetic variations yet to be 

discovered (44).  

     The molecular mechanism behind obesity, and the associated metabolic diseases i.e. NAFLD 

and NASH is believed to be due to insulin resistance, an increase of plasma insulin and Insulin 

Growth Factor-1 (IGF-1), which enhance the secretion of pro-inflammatory cytokines (i.e. IL-6) 

and adipokines. Moreover, the increased availability of adipocytes facilitates the activation of 

inflammatory cells such as Kupffer cells (liver macrophages).  

     Collectively, all these events increase the oxidative stress and create a suitable environment 

that is mostly thought to be influenced by cirrhosis, which then facilitates the development of 

HCC (reviewed in (47)). However, there are reports implicating non-cirrhotic NAFLD in HCC 

development (45).  However, it has been claimed that although a number of studies implicated 

obesity in HCC development, there are no clear associations between obesity and HCC due to 

lack of data that demonstrates a true link, and therefore, the calculation of risk of obesity to the 

development of HCC is still controversial (4).  
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Figure 4: 

A diagram showing the current proposed mechanisms behind obesity related Hepatocellular 
Carcinoma (HCC). A multitude of factors, such as genetic variants, unbalanced diet, medication, 
endocrine disorders and sedentary life style, are shown  to be associated with obesity. The impact 
of obesity to the development of HCC is thought to be through the initiation of a low-grade 
inflammation leading to generation of oxidative stress such as Reactive Oxygen Species (ROS) 
and Reactive Nitrogen Species (RNS) and progression of NAFLD to NASH. Figure adopted 
from (47). 
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1.1.2 Molecular mechanisms of hepatocarcinogenesis: 

     The genomics driving the transformation of a single or group of hepatocyes to proliferate, 

undifferentiate and migrate from a primary tumor and settle into a secondary organ is 

complicated and much of it is still unknown. (48). Hanahan and Weinberg defined cancer as 

“acquired functional capabilities that allow cancer cells to survive, proliferate, and disseminate; 

these functions are acquired in different tumor types via distinct mechanisms and at various 

times during the course of multistep tumorigenesis” (49).   

     The development of HCC requires a long process of cellular alterations starting from a stem 

cell or differentiated hepatocyte leading to changes that create hallmarks of cancer (50). In most 

cases HCC is believed to arise from a cirrhotic microenvironment, which will allow the initiation 

of hyperplastic nodules that will progress to dysplastic nodules and eventually HCC. For these 

histological changes to occur, a multistep deregulation of epigenetic and genetic processes that 

are involved in regulating cellular behavior and interaction with neighboring normal cells and 

microenvironment need to occur (Figure 1) (4, 49, 50). As mentioned earlier in the chapter there 

are reported cases where HCC arise from a non-cirrhotic microenvironment. The reason is still 

unclear, however there are suggestions implicating the exposure of additional risks that might 

accelerate the process to surpass the need of cirrhosis (14, 45). The inherent complexity and 

heterogeneity of HCC might be due to the variability in the impact of risk factors (19).  Although 

gene expression studies of HCC demonstrated that genetic signature of every patients is different 

than the other, the majority showed a common deregulation that include: EGFR-Ras-MAPKK 

Pathway, c-MET Signaling, IGF Signaling, PI3K/Akt/mTOR Pathway, Wnt β-Catenin Pathway, 

hedgehog pathway, the inflammatory pathway, such as IL-6, and p53 (reviewed in (50, 51)). 
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1.1.2.1 EGFR-Ras-MAPKK Pathway: 

     Epidermal Growth Factor Receptor (EGFR, also known as Her1) is a tyrosine kinase receptor 

from a family of ErbB receptors that include four receptors (ErbB2 (Her2), ErbB3 (Her3), ErbB4 

(Her4). Following ligand binding, EGFR form homo and heterodimers that result in 

autophosphorylation of the receptor to transmit downstream signal. (reviewed in (50)). 

     The association between activated EGFR and HCC was seen in overexpression of EGFR in 

most of HCC cases. Overexpression of EGFR correlated with poor prognosis. According to 

Cervello et al., recent studies demonstrated that high levels of tissue and serum EGF in cirrhotic 

patients increased the adjusted risk for HCC compared to unaffected individuals (51, 52).  

     It is worth noting that, activating mutations of Ras are relatively low in HCC. Interestingly, 

studies on HCC showed that Ras is activated in most of HCC patients (16). Activation of Ras-

MAPKK pathway was seen to be through downregulation of Ras inhibitors such as Spred or Raf 

inhibitors such as RKIP (16) (Figure 5). Overexpression EGFR leads to the activation of Ras-

MAPK. Moreover, HBV and HCV were reported to activate MAPKK pathway (16).  
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Figure 5:  

The figure is a representation of a receptor tyrosine kinase receptor signaling upon ligand 
binding (GF: Growth Factor) such as EGF binding to EGFR. White squares represent current 
drugs used to block signaling pathway in HCC. “P” denotes the event of phosphorylation. 
Figure was adopted from (51). 
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1.1.2.2 c-MET (mesenchymal-epithelial transition factor) Signaling: 

     Binding of Hepatocyte Growth Factor (HGF) to its receptor c-Met, induces dimerizationof the 

receptor and downstream signaling. HGF is an essential growth factor that enhances proliferation 

of hepatocyte. Upon liver damage stellate cells get activated and secrete HGF, which then binds 

c-Met, and enhance downstream signaling such as MEK/ERK, and PI3K/Akt pathways.  In 

HCC, overexpression of c-Met has been reported in a large number of cases. HGF/c-Met 

signaling is commonly altered in HCC and is correlated with poor prognosis and metastasis (50, 

53) and recently, HGF independent activation of c-Met via upregulation of osteopontin has been 

reported in HCC (53).  

 

1.1.2.3 IGF Signaling: 

     Insulin like growth factor is from a family of growth factors that regulate a multitude of 

cellular events such as fetal development, proliferation, differentiation, cell growth and 

apoptosis. The family includes IGF-1 and IGF-2 that binds to IGF- receptors (IGF-R) and induce 

downstream signaling (reviewed in (51)). IGF2 is mostly overexpressed in HCC in around 40% 

of the cases . The overexpression of IGF-2 is thought to be through dysregulated methylation of 

the promoter region of IGF-2, the interaction of HBx protein of HBV or HCV core protein (54-

56). According to Llovet et al, there are no reports implicating IGF-1 in HCC and surprisingly 

IGF-1 was shown to improve cirrhosis (50). The deregulation of the IGF signaling in HCC is 

also coupled with the downregulation of tumor suppressor proteins IGF bindin protein-1 

(IGFBP-1), IGFBP-3, IGFBP-4 and more recently IGFBP-7 (50, 57). 

 

 



	   21	  

     1.1.2.4 PI3K/Akt/mTOR Pathway:  

     The deregulation of PI3K/Akt/mTOR pathway is a common phenomenon in carcinogenesis. 

Alteration of the pathway has been reported in a number of cancers including HCC (49, 50). 

Following binding of extracellular signals such as EGF, PI3K gets activated and induce 

downstream signaling (Figure 5). PI3K/Akt/mTOR pathway regulates many cellular mechanisms 

such as proliferation, growth, survival, motility and protein synthesis (reviewed in (51). In HCC 

the activation of PI3K/Akt/mTOR pathway takes place at multiple levels. Constitutive activation 

of PI3K might result from mutation in PIK3CA (catalytic domain of PI3K), which has been 

reported in HCC patients (58, 59).  

     Another possible mechanism of constitutive activation of the pathway was shown to be 

through epigenetic aberrations leading to downregulation of PTEN (tumor suppressor; negative 

regulator of PI3K) or Ras inhibitors. However, it is worth noting that PTEN mutations are low in 

HCC and the most possible mechanism for PTEN silencing is through loss of heterozygosity (50, 

51, 60). Downregulation of PTEN and activation of the PI3K/Akt/mTOR pathway was reprted to 

be mediated by HBx protein (61). The activation of the PI3K/Akt/mTOR pathway is associated 

with poor prognosis in HCC (51). 

 

1.1.2.5 Wnt β-Catenin Pathway:  

      In the canonical Wnt β-Catenin signaling, the binding of the extracellular Wnt to the Frizzled 

receptor rearranges the membrane anchored β-Catenin complex so that it inhibits the negative 

phsphorylation of β-Catenin, which then leads to its nuclear translocation to activate target genes 

such as c-myc (reviewd in (62)). Wnt β-Catenin pathway is an essential pathway regulating, 

embryogenesis, neurogenesis, apoptosis, proliferation and carcinogenesis. The activation of the 
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Wnt β-Catenin pathway is a key mechanism regulating invasive capability of cancer cells(50). In 

viral hepatitis related HCC, the HBx protein was shown to interact with and activate β-Catenin 

pathway. Similarly, HCV core protein was shown to act as a Wnt ligand and induce downstream 

signaling (51). Constitutive signaling of Wnt pathway has been reported in one third of HCC 

cases (50). Deregulation of Wnt pathway and translocation of β-Catenin into the nucleus was 

shown recently to be mediated by Astrocyte elevated Gene 1 (AEG-1), an oncogene 

overexpressed in HCC (63). Activating mutation of β-Catenin, Axin1 or APC are relatively low 

in HCC, the most common alteration is through the overexpression of the Frizzled receptor (51).  

 

  

 

 

 

 

 

 

 

 

 

Figure 6: 

 Left: In the absence of Wnt, β-Catenin gets phosphorylated by CK1 and GSK3α/β and 
targeted for βTrCP (member of E3 ubiquitin ligase complex) mediated degradation by the 
proteasome. Right: Following binding of Wnt, Frizzled receptor induces rearmament 
signaling cascade that prevents the negative phosphorylation of β Catenin leading to its 
translocation into the nucleus to activate target genes. Adopted from (62). 
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1.1.2.6 Inflammatory Pathway: 

     Increasing evidence linking inflammation to cancer lead Hanahan and Weinberg to add 

inflammation to the hallmarks of cancer to their recent review (49). The inflammatory pathway 

plays a critical role in the development of HCC (4, 6, 51). Nearly, all risk factors for HCC 

activates the inflammatory pathway and the development of HCC in most cases is preceded by 

cirrhotic/chronic inflammatory microenvironment (4, 45, 47, 50).   

     The mechanism behind the modulation of chronic inflammation in HCC is yet far from 

getting elucidated. The available data in the literature implicate the involvement of cytokines 

such as IL-6 and other inflammatory mediators such as tumor necrosis factor α (TNFα), 

prostaglandin E2 (PGE2) and cyclooxygenase 2 (COX-2) (reviewed in (64)). Moreover, STAT3, 

downstream of IL-6, was also implicated in HCC. Activation of STAT3 (pTyr705) induced 

transformation of NIH3T3 and 3Y1immortalized fibroblasts and tumor formation in mice (65). 

Another player in the inflammatory cascade of cancer is the NF-κB. Several reports suggested 

the association of NF-κB cascade with cancer development (reviewed in (66)). In HCC, NF-κB 

is overexpressed and aberrantly activated in many HCC cases and HCC cell lines (51).  

     The General theme behind inflammation induced HCC is believed to be through the 

activation and enhanced secretion of pro-inflammatory factors such as cytokine that lead to the 

activation of STAT3 and activation and recruitment of inflammatory cells such as macrophages. 

Infiltration of macrophages increases the oxidative stress and genomic instability. Collectively, 

all these events are thought to create a favorable environment for a tumor to arise (16, 47, 51, 

67).  
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1.1.2.7 Hedgehog Pathway:  

      Hedgehog signaling pathway is an important pathway that is involved in development, cell 

polarity and differentiation (reviewed in (68). The pathway is silenced in adult hepatocytes, 

however, it gets reactivated when the liver is in regenerative state i.e. liver damage (51). In 

general, alterations of the hedgehog pathway have been reported in cancers including HCC (51, 

68). The implication of the aberrant activation of the pathway is not well understood, however, 

recent reports showed that Hedgehog facilitate invasion and metastasis of human HCC via 

increasing MMP-9 expression by modulating ERK pathway (69). Moreover, a cross talk between 

Hedgehog pathway and Wnt/β-Catenin pathway has been reported in literature (51).  

 

1.1.2.8 p53 pathway:  

     The tumor suppressor p53 is an important regulator of genomic stability of the cell, often 

called “Guardian of the genome”. It is a transcription factor that can have nuclear and 

cytoplasmic functions regulating a plethora of cellular events such as apoptosis and DNA repair. 

The p53 gene is mutated and implicated in carcinogenesis in most reported cancers including 

HCC (49, 50).  The inactivation of p53 in HCC can be by either loss of heterozygosity, genomic 

mutation of the p53 gene such as in Alfatoxin B1 or by nullifying its function through protein- 

protein interaction such as the case with viral hepatitis related HCC (4, 16, 50).   
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1.1.3. Staging of Hepatocellular Carcinoma (HCC) 

     A number of staging systems are being used around the world to evaluate the development, 

progression and treatment options for HCC patients.  All systems characterize patients based on 

cytopathological changes, patient symptoms or liver function tests and none of them have 

incorporated the molecular and genetic alterations yet (reviewed in (70), (4) ). The available 

staging systems are Barcelona Clinic Liver Cancer (BCLC), Cancer of the Liver Italian Program 

(CLIP), TNM (tumor, node and metastasis), Okuda, and Japanese Integrated Staging Score (JIS) 

systems.  

     In the United States, American Association for the Study of Liver Diseases (AASLD) uses the 

BCLC system as standard for staging HCC. The preference to use the BCLC system over the 

others is because it has an implemented treatment algorithm that can predict treatment based on 

assessing tumor stage, patient physical status, symptoms and liver function (Figure 7) (14, 70). 

Although, BCLC is probably the best system for predicting treatment, it has an inherit limitation 

in that the molecular alteration are not implemented in the system. This might be due to the lack 

of diagnostic molecular markers and the complexity of HCC due to the heterogeneity seen in 

patients (4, 14, 70).  Therefore, identification of new diagnostic markers is immensely required 

to diagnose and treat patients at very early stage when prognosis is highly favorable (4, 48) 

 

1.1.4. Treatment:  

          Cancer in general and Hepatocellular Carcinoma (HCC) in particular are not easy to treat. 

The idea of one drug works for all is no longer acceptable in cancer therapy. This is due to the 

fact of heterogeneity and resistance to conventional treatments (4, 48, 50). The BCLC treatment 

algorithm treats patients based on the stage. For example, surgical resection and liver 
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transplantation are offered for patients diagnosed at an early stage with equal or more than 75% 

survival rate (Figure 7) (4). However, unfortunately due to lack of early diagnostic markers, most 

patients are diagnosed at an advanced stage where prognosis is dismal (4, 71).  

     Molecular targeted therapy has ushered in a new era in the treatment of advanced stage HCC. 

For instance, clinical trials lead to the validation of sorafenib, BRAF/VEGFR/PDGFR multi-

kinase inhibitor, as a standard drug for treating advanced stage HCC. Trials have shown that 

sorafenib by itself improved overall survival by ~3 months (4, 48, 50).  

     The need for personalized medicine is increasing as each HCC patient has a cancer genetic 

signature that is different than the other. Anti cancer drugs should be tailored based on the 

signature of molecular alterations of patients. This can only be approached through the 

identification of new markers and potential therapeutic targets for combinatorial therapy (36, 71). 
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Figure 7: 

The BCLC algorithm that is endorsed by AASLD. Stage 0: patients at a very early stage. 
Stage A: patients with early HCC. Stage B: patients with intermediate HCC; no portal vein 
invasion. Stage C: patients with advanced HCC, portal vein invasion and extrahepatic 
metastasis. Stage D: terminal HCC, at that stage patient receive treatment to ameliorate 
symptoms. CLT: Cadaveric Liver Transplantation. LDLT: Living Donor Liver 
Transplantation. PEI: Percutaneous Ethanol Injection. RF: Radio Frequency ablation. TACE: 
Transarterial chemoembolization. Figure adopted from (50). 
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1.2 Angiogenesis in Hepatocellular Carcinoma (HCC): 

     Angiogenesis is a phenomenon that describes the generation of new blood vessels from an 

extant vasculature. It is a highly controlled physiological phenomenon that gets activated in the 

case of menstruation, wound healing, and tissue repair. The link of angiogenesis with 

carcinogenesis was first suggested by the pioneering work of Judah Folkman. Folkman et al. 

showed that cancer cells are capable of altering the “net-balance” between pro-angiogenic and 

anti-angiogenic molecules to the advantage of angiogenesis leading to “angiogenic-switch” (72-

75). As a result, the work of Judah Folkman lead to the recognition of angiogenesis as a 

hallmark of cancer (49).  

     Briefly, the mechanism of angiogenesis initiates vasodilatation and destabilization of the 

vessel (mediated by VEGF, ANG2) resulting in  increase in the vessel permeability. Exuded 

plasma proteins act to guide the migrating endothelia cells to the target (mediated by integrins). 

Then, upregulation of Matrix Metalloproteinases (MMPs) facilitate the breakdown of the 

extracellular matrix, migration and proliferation of endothelial cells. Next, biding of endothelial 

cells (mediated by VE-cadherins and integrins) and tube formation is initiated (mediated by 

TNF-α, FGF and PDGF). After that, the primitive endothelial layer is formed by the 

differentiating endothelial cell and recruited pericytes (mediated by VEGF, PDGF and TGFβ). 

Finally, the mature vessel is re-stabilized (mediated by ANG-1), and new extracellular matrix is 

formed (reviewd in (76)).  

     HCC is a highly vascular cancer, preceded in most cases by chronic liver disease. As 

mentioned earlier in the chapter, irrespective of the etiological agent the chronic inflammation 

leads to the activation of resident macrophages (i.e. Kupffer cells) and stellate cells. As a result, 

Kupffer cells secrete pro-inflamatory cytokines such as TNFα, and increase levels of ROS and 
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Platelet Activating Factor (PAF). Moreover, the secretion of proinflamatory cytokines has been 

shown to increase levels of HIF1α. Similarly, activated stellate cells secrete a number of pro- 

inflammatory cytokines and pro-inflammatory mediators such as, VEGF, PlGF, PDGF and 

nitric oxide (NO). Together, stellate cells and kuppfer cells recruit inflammatory cells that also 

secrete cytokines and promote angiogenesis. For example, it has been shown that leucocytes 

secrete a number of pro-angiogenic factors such as Ang-2, VEGF, and many others (Figure 8) 

(77).  

     Collectively, all these events are implicated to promote angiogenesis (76). The progression 

of CLD to cirrhosis increases the portal vein pressure and induces portal hypertension that 

creates a hypoxic condition in the surrounding tissue, which then promotes induction of HIF1α 

and angiogenesis.  In HCC, transformed hepatocytes showed increased production in pro-

angiogenic factors such as VEGF, FGF and many others and downregulation of anti-angiogenic 

factors such as thrombospondin-1. Angiogenesis is a major mediator in HCC progression, and 

currently potential inhibitors of angiogenesis are being evaluated in clinical trials (76). 
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Figure 8: 

Although angiogenesis and inflammation come hand in hand, they are two different events. 
The figure illustrates the interplay between angiogenesis and inflammation. Hypoxia induces 
both inflammation and angiogenesis. Upon arrival to the target site, activated inflammatory 
cells secrete pro-angiogenic factors that promote angiogenesis to supply them with oxygen 
and nutrients to meet their metabolic activity. Figure adopted from (76). 
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1.3 Metastasis: 

      Metastasis is the death sentence for cancer patients. It is a name given to a wide spectrum of 

complex events ranging from migration from a primary organ to colonization of a secondary 

organ. Hanahan and Weinberg defined metastasis as a process that encompasses four key events: 

First, the cancer cell has to migrate from the primary site (known as “local invasion”). Second, 

cancer cell has to pass the endothelial cell membrane and invade lymphoid and blood vessels 

(known as “intravasation”). Third, cancer cell has to migrate, move out from the circulation and 

invade the cell membrane of the blood vessels and settle in a secondary site (known as 

“extravasation”. Fourth, cancer cell has to acquire the capability to expand from micrometastatic 

to macrometastatic nodule and colonize the new environment (known as “colonization”) (49).  

     Given this complexity, it is possible to think that for a cancer cell to metastasize it has to 

acquire a large number of alterations in genes regulating cellular behavior and interaction with 

the microenvironment. However, Hanahan and Weinberg by interpreting available data on 

tumor-microenvironment interaction stated an untested hypothesis that tumor- microenvironment 

interaction might be enough in some cancers to facilitate metastasis. Cancer cells might not need 

additional mutation other than the ones responsible for tumor initiation (49).  

     Molecular alterations of cells undergoing metastasis are at the level of cell adhesion, 

proteolysis of extracellular matrix, invasion and tumor tissue microenvironment interaction 

(reviewed in (78)). The interepithelial adhesion of primary tumor cells is disrupted by down-

regulation or disruption of the interaction of E-cadherin. Several reports linked alterations in E-

cadherin to the aberrant methylation of its promoter region or to mutations in the β-catenin/E-

cadherin complex leading to endocytotosis and degradation of the complex. Moreover, 

transcription silencers of E-cadherin such as Snail, Slug, and Twist and many others have been 
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shown to be overexpressed and downregulate E-cadherin. In fact, the above-mentioned 

transcription factors are key mediators of Epithelial-to-Mesenchymal Transition (EMT) 

suggesting that the cadherin switch that is seen by the downregulation of E-cadherin and 

upregulation of N-cadherin in cells undergoing metastasis is a characteristic of EMT (78). 

Alteration in E-cadherin by the proteolytic cleavage of the extracellular domain by MMPs such 

as MMP3 and MMP7 is reported in literature (78, 79).  

     Interaction with integrins is an important mechanism that orchestrate the migratory 

phenotype. Integrins have diverse functions in regulating migration, proliferation and survival. 

The regulatory role of integrins vary depending upon the cell context. For example, α2β1 and 

α3β1 mediate epithelial cell adhesion and decrease metastasis in some experimental models but 

promote invasion and metastasis in other models (78).  

     Alterations in cell surface proteoglycan such as CD44 have been reported in cancers. CD44 is 

constitutively activated in mesynchymal cells and fibroblasts. CD44 can bind with ErbB, c-Met 

and co-localize with MPPs and by doing so it increase invasion through promoting migration and 

survival (78). Cancer cells can upregulate the expression of MMPs themselves or enhance the 

secretion of MMPs in the stroma and surrounding microenvironment to clear up the way by 

degrading the ECM. However, this is not applicable to all cancer metastasis (49, 78).  

      Increasing evidence suggests that cancer metastasis depends on the interaction with 

microenvironment, as in some cancers we see that cell undergoing metastasis lack key features 

of metastasis and depends on the supply of the stroma for these factors (49). The concept of 

whether metastasis is a late or an early event is being debated. Microarray analysis data of some 

very early primary tumors showed a group of cells that resemble a metastatic genetic signature 
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(80).  To better understand metastasis, we need to take cancer cells-microenvironment into 

account (49).    

  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 9: 
 
A schematic representation of four key events in metastasis. Hyperplastic tissue progress to 
carcinoma in-situ and subsequent alteration and microenvironment interactions facilitate local 
invasion, intravasation, extravasation and colonization of a secondary organ. Figure adopted 
from (78). 
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1.4 Astrocyte elevated gene-1 (AEG-1): 

1.4.1 Identification: 

     The laboratory of Dr. Paul B. Fisher first reported the identification and cloning of Astrocyte 

elevated gene-1 in 2002.  The identification of AEG-1 came from studies of deregulated genes in 

Primary Human Fetal Astocytes (PHFA) upon HIV-1 infection that are responsible for neuronal 

degeneration seen in late stage Acquired Immune Deficiency Syndrome (AIDS). AEG-1 was 

identified by rapid subtraction hybridization (RaSH) approach comparing gene expression 

between HIV-1 infected and uninfected PHFA and was shown to be an HIV-1 and TNFα 

inducible gene (Figure 10) (81, 82).  

      Two years later, three different laboratories in 2004 identified AEG-1 in different cellular 

contexts and locations. In an effort to study breast cancer metastasis to the lung using phage 

screening approach Brown and Ruoslahti identified AEG-1 as a protein that is located on the cell 

membrane and mediates breast cancer metastasis to the lung, thereby naming it metadherin 

(MTDH) (83). Britt et al indentified mouse/rat AEG-1 as a tight junction protein and named it 

LYsine-RIch CEACAM1 co-isolated (LYRIC), while Sutherland et al. identified it as a protein 

present in ER and nuclear membrane as well as in the nucleolus by gene trapping techniques and 

named it 3D3/lyric.(84, 85).  
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Figure 10: 
A diagram representing the rapid subtraction hybridization (RaSH) on the infected and 
uninfected Primary Human Fetal Astrocyte (PHFA). Figure adopted from (81). 
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1.4.2 AEG-1 locus and protein structure:  

1.4.2.1 AEG-1 locus: 

     Human AEG-1 gene is located at chromosome 8q22. This location is specifically significant 

as it is a hot spot for genomic amplifications in a number of malignancies, including HCC (86). 

Studies using microarray and SNP array in HCC demonstrated significant gains in copy number 

of AEG-1 that is associated with the increased expression of AEG-1 (63).  Studies in breast 

cancer confirmed the genomic amplification in 8q22 using Fluoresence in situ hybridization 

(FISH) and genomic DNA quantitative PCR (qPCR), which correlated with the overexpression 

of AEG-1 (87). The gene has 12 exons and 11 introns with high conservation among vertebrates 

with 90% identity. The mRNA encodes a single transmembrane protein with a predicted 

molecular weight of 64 Kilo-Dalton (KD).(88). 

1.4.2.2 AEG-1 protein structure: 

     AEG-1 is a lysine rich, highly basic protein with a single transmembrane domain. The protein 

is predicted to contain a transmembrane domain (TMD) at amino acid residues 51 to 72 and three 

putative nuclear localization signals (NLS) between residues 79 to 91, 432 to 451, and 561–580 

(Figure 11). AEG-1 is located in the nucleus, nucleolus and ER/nuclear envelop. The C-terminal 

extended NLS-3 (residues 546–582) is responsible for the nuclear localization. The NLS-1 

(residues 78–130) controls nucleolar localization. The NLS2 (residues 415–486) is believed to be 

subjected to monoubiquitination, which results in sequestration of AEG-1 in the cytoplasm (88).   

     The protein is predicted to be subjected to post-translational modifications since it contains a 

variety of putative amino acid residues for post-translational modifications. For example, the C- 

terminal 435-GALPTGKS-442 is putative binding site for ATP/GTP. Moreover there are a 
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number of phosphorylation sites such as tyrosine, serine, and threonine amino acids that might be 

subjected to phosphorylation by Protein Kinases A and C (PKA and PKC) (88).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: 
Representative figure of the predicted protein structure of AEG-1, and site of interacting 
proteins. Numbers are amino acid residues. TMD: transmembrane domain; and NLS: nuclear 
localization signal. Figure adapted from (88) 
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1.4.3 Physiological function of AEG-1: 

     The physiological function of AEG-1 is yet to be elucidated. The expression of AEG-1 is 

detected in a number of normal tissues with highest level in skeletal muscle, heart, thyroid and 

the adrenal gland (89). Moreover, recent studies implicated AEG-1 in embryonic development in 

mice. Whole-mount immunohistochemistry showed expression of AEG-1 at E9.5 (embryonic 

day 9.5) in dorsal midbrain and fronto-nasal process.  The expression between E9.5 to E10.5 was 

detected in the forelimb, the hindlimb and the pharyngeal arches. Moreover, at E12.5 to E18.5 

the expression was seen in the brain, olfactory and skeletal systems. Expression of AEG-1 at 

these specific timings and sites implicates AEG-1 in embryonic development (90).  

1.4.4 AEG-1 in carcinogenesis: 

     AEG-1 is aberrantly overexpressed in a large number of cancers. The overexpression of 

AEG-1 was reported in breast, prostate, gastric, renal, colorectal cancers, non-small cell lung 

cancinoma, esophageal squamous cell carcinoma, melanoma, glioblastoma multiforme, 

neuroblastoma, oligodendroglioma and hepatocellular carcinoma. Microarray expression 

analysis of HCC patients showed overexpression of AEG-1 in tumor compared to non-tumor 

tissue. The expression was also correlated with the disease stage and level of differentiation. 

AEG-1 was seen to be significantly upregulated in HCV-related HCC as opposed to cirrhotic and 

normal tissue (63, 88).   

     AEG-1 play a critical role in carcinogenesis as it interplays with a number of biological 

phenomena of cancer such as proliferation, anchorage-independent growth, migration, invasion, 

chemoresistance, angiogenesis and in vivo tumorogenesis and metastasis, suggesting that AEG-1 

mediate the hallmarks of cancer (reviewed in (88)). Ectopic expression of AEG-1 promotes 

proliferation in large spectrum cancer cells including HCC (63, 91, 92). Experimental 
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upregulation of AEG-1 in normal human cells, such as the immortal primary human fetal 

astrocytes (IM-PHFA) and normal immortal melanocytes (FM516-SV) induce resistance to 

serum starvation- induced apoptosis, implicating AEG-1 in onogenesis by increasing survival of 

cells (93). Moreover, ectopic expression of AEG-1 was shown to mediate H-Ras-induced 

anchorage independence in normal cloned rat embryonic fibroblasts (CREF), IM-PHFA, and 

FM-516-SV, suggesting that AEG-1 promote transformation of normal cells via H-Ras (89, 94, 

95). AEG-1 was shown to be a downstream gene of H-Ras. H-Ras activates PI3K/Akt, which in 

return promote expression of AEG-1 that enhances PI3K/Akt activity suggesting that AEG-1 

induces a positive feedback loop (Figure 12) (reviewed in (88)). Microarray expression analysis 

showed increased expression of genes related to chemoresistance in human HCC cells 

overexpressing AEG-1 when compared to control cells. Overexpression of AEG-1 upregulated 

dihydropryimidine dehydrogenase (DPYD), a drug-metabolizing enzyme, and the transcription 

factor LSF/TFCP2 (reviewed in (88)). Overexpression of LSF, increases the expression of 

thymidylate synthase (TS), a target of 5-Fluorouracil (5-FU). As a result, cells gain resistance to 

5-FU (96). AEG-1 modulation of the chemoresistance phenotype was also seen through 

increasing the stability of proteins implicated in resistance to chemotherapeutic drugs. For 

instance AEG-1, enhances the association of multidrug resistance gene 1 (MDR1/	   ABCB1) 

mRNA thereby increasing its translation via activation of PI3K pathway (97). Angiogenesis was 

also seen to be induced by AEG-1. HCC cells that overexpress AEG-1 showed upregulation of a 

number of pro-angiogenic factors and matrix metalloproteinases such as vascular endothelial 

growth factor (VEGF), placental growth factor (PIGF), fibroblast growth factor α  (FGFα), 

HIF1α and MMP-2 (63, 88, 94). Moreover, AEG-1 overexpressing cells showed upregulation of 

genes involved in Wnt signaling such as LEF1, metastasis such as TSPAN8, and down 
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regulation of genes involved in senescence such as IGFBP-7(57, 63). Experimental studies of 

AEG-1 tumorigenic properties showed that it cross talks with PI3K/AKT, NF-κB , MAPK and 

WNT/β-catenin pathways and by doing so AEG-1 augments proliferation, migration, invasion, 

anchorage-independence, chemoresistance, angiogenesis, and metastasis and inhibits senescence 

(Figure 12) (reviewed in (88),(98). 

 

1.4.5 AEG-1 in neurodegenerative disorders: 

     AEG-1 was originally identified as an overexpressed transcript in HIV-1 infected astrocytes. 

Overexpression of AEG-1 is implicated in neuronal death associated with  HIV-1 activated 

dementia (HAD) (89). In support of this finding, Astroglial glutamate transporter (excitatory 

amino acid transporter-2/EAAT2) that mediates the clearance of glutamate from neuronal 

synapses in the Central Nervous System (CNS) is downregulated by AEG-1 (53). As a 

consequence, toxic accumulation of glutamate induce neuronal degeneration, a phenomenon that 

is seen in most neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), 

Alzheimer's disease, a number of forms of epilepsy, ischemia/stroke, HAD, traumatic brain 

injury and hepatic encephalopathy (88, 89). Moreover, the colocalization of AEG-1 with 

ribosome synthesis 1 (Rrs1) in the endoplasmic reticulum (ER) implicates AEG-1 in the 

pathogenesis of Huntington Disease (HD) since it was shown that in HD transgenic mouse 

models Rrs1 is upregulated and might regulate the pathogenesis of HD (88, 99, 100). 

 

1.4.6 AEG-1-interacting proteins:     

     Current evidences indicate that AEG-1 most likely functions as a scaffold protein interacting 

with other proteins and thereby mediating oncogenesis by regulating a variety of events. AEG-1 
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was shown to interact with NF-κB and the transcription co-activator cyclic AMP-responsive 

element binding protein (CREB)-binding protein (CBP). The interaction with CBP was shown to 

modulate AEG-1-NF-κB interaction, which leads to activation of target genes such as IL-8 (93).  

AEG-1 was shown to interact with BCCIPα, a tumor suppressor that binds to p21 (mda-6/CIP-1) 

and enhance the inhibition Cycline dependent kinase 2 (Cdk2 kinase). Inhibition of BCCIPα 

abrogates G1/S checkpoint activation following DNA damage. Cooperation of BRCA2 and 

BCCIPα is essential in homologous recombination repair of DNA damage and maintains 

chromosome stability. AEG-1 was shown to interact with Staphylococcal nuclease domain 

containing 1 (SND1) and mediates the cytoplasmic function of SND1 in facilitating RNA 

interference (RNAi) and angiogenesis (reviwed in (88), (101, 102)).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: 
 
A schematic representation of the current understanding of the network of molecular interactions 
of AEG-1 promoting tumorogenesis. Figure adopted from (88). 
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1.5 Tetraspanins: 

      Oren et al first reported the identification of tetraspanin proteins in 1990 (103). The family of 

tetraspanins participates in a wide range of physiological phenomena within the cell membrane 

that include fertilization, synaptic contacts at neuromuscular junctions, platelet aggregation, and 

maintenance of skin integrity and immune response induction. In addition, tertraspanins are 

implicated in pathological phenomena such as parasite and viral infection and carcinogenesis 

(104). Having these critical functions across a spectrum of cellular activities, it is not surprising 

to find that tetraspanins are highly conserved in evolution across species (105). 

1.5.1 The protein structure of tetraspanins: 

     Tertaspanins are a group of small transmembrane proteins with short N (amino) and C 

(carboxyl) tails. Tetraspanins cross the membrane four times, and have a small extracellular loop 

that is located between transmembrane 1 and 2 (TM1, TM2) and a large extracellular loop in-

between TM3 and TM4. The protein also has a small intracellular loop between TM2 and TM3 

(Figure 13) (104). The large extracellular loop is subdivided into a constant and a variable 

region. The constant region is responsible for dimerization with tetraspanin members. The 

variable region is responsible for interaction of tetraspanins with non-tetraspanin members. In 

addition, tetraspanins harbor conserved cysteines in the large extracellular loop that are believed 

to act as a signature for tetraspanins.  Transmembrane regions contain polar amino acids that are 

believed to fix the tertiary structure of the protein. Just like any protein, tertraspanins are 

subjected to post-translational modifications. Tertraspanins have palmitoylation sites. 

Palmitoylation of intracellular juxtamembrane cysteines is essential for tetraspanin web 

formation and prevents the protein from lysosomal breakdown, acts as an association site to 

cholesterol and gangliosides, and enhances cell–cell contact. It is worth noting that 



	   43	  

palmitoylation of intergrins has also been shown to promote tetraspanin web formation. The C- 

tail of the protein of some tetraspanins such as TSPAN8 contains a tyrosine-based sorting motif 

that is believed to mediate internalization of tetraspanins (reviwed in (104)). 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: 
Since tetraspanins have similar structure, TSPAN8 is used a representative of tetraspanins in this 
cartoon. Large extracellular loop has 6 conserved cysteines (Red) and CCG motif; disulfide 
bonds are shown. Palmitoylation of cysteine residues (pink), and the carboxy tail with a sorting 
motif (blue) are shown in the cytoplasmic region. Polar amino acids (green) are present in 
transmembrane 1 and 4. Figure adopted from (104) 
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1.5.2 Tetraspanin Enriched Microdomain (TEM): 

     Tetraspanins associate and interact with other tertraspanin members and non-tetraspanin 

partners of cytosolic proteins. Given this wide range of interactions, the function of tetraspanins 

depends of the nature of associated proteins, some tetraspanins might have diverse functions 

depending on the cellular context (104).  The major transmembrane non-tetraspanin interating 

proteins are integrins, specifically α3β1, α4β1 and α6β1, G-protein-coupled receptors (GPCRs) 

and associated intracellular heterotrimeric G-proteins, peptidases, CD44, epithelial cell adhesion 

molecule (EPCAM), immunoglobulin (Ig) superfamily members such as EWI-F and EWI-2. 

Cytosolic signaling proteins such as protein kinas C (PKC), phospholipase Cγ  (PLCγ) and type 

II phosphatidylinositol 4-kinase (PI4KII) are shown to interact with tetraspanins (reviwed in 

(104)).  

     The aforementioned associations of tetraspanins with other proteins were delineated using 

different concentrations of detergents. The interactions were classified based on the required 

concentration of a detergent to break the association. The associations are classified into Class I, 

II and III. Class I interactions are strong and mainly homotrimers and homotetramers, and some 

heterointeractions between TSPAN8, CD81, CD9 and EWI proteins, and CD151 and integrins. 

These types of interactions may proceed through the large extracellular loop and or TM2 or TM3 

or TM4; Class I interaction are direct and infrequent.  

Most of tertraspanin-tetraspanin interactions and tetraspanin-integrin interactions are 

class II interactions (medium strength; maintained in mild detergents).  

  Class II interactions require palmitoylation of the tetraspanin partners or tetraspanins 

themselves.  
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Lastly, Class III (weak; disrupted by milder detergents) interactions are mainly the 

cytosolic interacting proteins such as kinases. Palmitoylation of the cytosolic protein or 

tetraspanins enhances the interaction complex. In addition to all these associations, tetraspanins 

associate with lipid molecules and cholesterol and gangliosides. Such intereraction enhance the 

formation and increase the complexity of high micromolecular structures called Tetraspanin 

Enriched Microdomain (TEM) (104). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
Figure 14: 
A representation of the Tetraspanin Enriched Microdomain (TEM), and the interacting partners. 
TSPAN8 is shown as a representative. Figure adopted from (104). 
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1.5.3 Main roles of tetraspanins in carcinogenesis: 

     The functions of tetrapsanins are dependent on the context of the tetraspanin-enriched 

microdmain (TEM) and the cell type. Tetraspanins can exert their effects through direct 

association with tetraspanin partners or infrequently through ligand binding. The function of the 

associated proteins might be enhanced or inhibited depending on the TEM (106). Moreover, 

tetraspanins are enriched in secreted exosomes, which suggests that they might play a role in 

cell communication with neighboring cell (104).  

     Tetraspanins are implicated in a wide range of cellular operations. These include: A) In 

cancer tetraspanins are mainly implicated in augmenting migration and tube formation that is 

mainly due intergrin internalization, compartmentalization and signaling. B) Tetraspanins are 

also implicated in cell adhesion via their ability to regulate the biosynthesis and trafficking of 

integrins. C) Tetraspanins are involved in inhibiting cell migration via association of EWI that 

inhibit the phosphorylation of Ezrin-Radixin-Moesin proteins (ERM). D) Tetraspanins modulate 

the invasive phenotype of cancer cells probably through association with peptidases, such as A 

disintegrin and metalloprotease  (ADAMS; such as ADAM10), and MMPs. CD151, a 

tetraspanin member, has been shown to regulate transcription of MMPs such as MMP7 

(reviwed in (104), (107)). 

 
1.5.4 Functional classification of teraspanins in carcinogenesis: 

     Tetraspanins are classified based on their correlation with the metastasic profile in 

malignancies. Based on reported cases thus far, tetraspanins are found to have both antagonistic 

and agonistic effects on metastasis. Such contradictory effects of tetraspanins on metastasis are 

related to the diversified nature of associating partners i.e. the context of the TEM. Tetraspanins 
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that were reported to suppress metastasis are CD9 and CD82. On the other hand, metastasis-

promoting teraspanins are TSPAN8 and CD151 (reviewed in (104)). 

1.5.4.1 Metastasis suppressing tetraspanins:  

• CD82:  

       CD82 contains 6 cysteines in the large extracellular loop and internalization motif 

and is detected on the endosomal-lysosomal compartment of exosomes. CD82 is 

downregulated and loss of CD82 correlates with poor prognosis in a number of 

malignancies such as cervical, ovarian and breast cancer and melanoma (104, 108).  In-

vitro and in-vivo studies demonstrate that the forceful expression of CD82 abrogates 

metastasis in experimental models (104). The molecular mechanism behind the 

metastasis suppression capability of CD82 is believed to be through its ability to 

associate with a number of interacting proteins. For example, CD82 interacts with α6 

integrin chain and EGFR resulting in inhibition of laminin adhesion and migration.  

     Another example is the association with EWI protein that has been shown to facilitate 

the tumor suppressor function of CD82. In regards to the cellular context of TEM, it is 

worth noting that the ability of CD82 to inhibit or promote EGFR mediated proliferation 

is contingent on the presence of gangliosides, GD1a. GD1a is proposed to induce re-

localization of the CD82-EGFR complex that might abrogate the ability of CD82 to 

recruit proteins that inhibit the phosporylation of EGFR and thus CD82 loses the ability 

to inhibit proliferation. These examples from studies on CD82 indicate that the diversity 

in function seen in tetraspanins is because of the capability to form higher complexity of 

the micromolecular structure, the tetraspanin enriched microdomain, and the ability of 

tetraspanins to associate wide spectrum of proteins. (reviewed in (104)).  The possibility 
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of reintroducing the expression of CD82 as a therapeutic strategy requires further 

experimentations, especially after the finding of Tsai et al. that CD82 could be 

ubiquitinated through its ubiquitin ligase gp78. This finding suggests potential use of 

proteasome inhibitors for therapy (104, 109) 

• CD9:  

     The classification of CD9 on whether it is considered a metastasis suppressor 

tetraspanin or metastasis-promoting tetraspanin is questionable. This is due to the fact 

that the available reports on CD9 in metastasis are paradoxical. In some malignancies, 

CD9 promote metastasis but in others it inhibits metastasis. For example, in ovarian 

carcinoma CD9 has been shown to associate with integrin chains such as β1, α2, α3, α5 

and α6. Consequently CD9 inhibit metastasis through inhibiting the integrin-mediated 

motility that is associated with low matrix adhesion, and downregulation of CD9 is 

correlated with poor prognosis (110).  Moreover, studies of microarray analysis 

demonstrated that in CD9 overexpressing fibrosarcoma cells genes involved in EMT, 

such as the WNT pathway, are downregulated, and thus CD9 act as a metastasis 

suppressor (111).  

     One the other hand, it has been shown that forceful overexpression of CD9 in 

melanoma cell lines, upregulates the expression of MMP2, which implicates CD9 in 

promoting metastasis by participating in the overexpression of an ECM degrading 

enzyme and transendothelial migration (112). The diverse effects of CD9 are consistent 

with the properties of tetraspanins to associate with multiple proteins, CD9 effects on 

metastasis are dependent on the cellular context and TEM (reviewed in (104)). 
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• CD63 and CD81: 

     Several reports on literature implicated CD63 and CD81 in suppressing tumor 

metastasis. In-vitro studies showed that CD63 inhibits migration through inducing 

integrin endocytosis and MMP14 breakdown and recruitment of tissue inhibitor of 

metalloproteinase TIMP1 (reviewed in (104, 113). CD 81 has been associated with 

metastasis suppression in hepatomoa (104). 

1.5.4.2 Metastasis promoting tetraspanins:  

• CD151:  

     The characterization of CD151 as metastasis promoter tetraspanin was first reported in 

in-vivo studies of human epidermoid carcinoma line (114). Margot Zöller in her recent 

review suggests that CD151 should be used as a marker to predict prognosis in prostate 

cancer since its overexpression was seen in a wide variety of cancers such as breast, 

pancreatic, colorectal and non-small-cell lung cancer, and was associated with dismal 

prognosis in prostate cancer (104).  

     The mechanism by which CD151 promotes metastasis is believed to be through its 

ability to induce pericellular activation of MMPs such as MM9, MMP7and MMP2 that 

then results in degradation of the ECM and recycling of integrins. CD151 mediates the 

expression of MMP9. In-vitro studies on human melanoma cells showed that CD151 

associate with, α3β1 or α6β1 via CD151 homodimerization and mediates the integrin 

dependent c-Jun activation and subsequent MMP9 expression that results in enhanced 

motility. CD151 dependent internalization of integrins i.e. integrin recycling, also plays a 

role in promoting migration of tumor cells (104, 115).  
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     Zijlstra et al. (116) demonstrated in an in-vivo study that blocking CD151 with an 

antibody abrogated the invasive ability of cancer cells via inhibiting intravasations but 

not extravasations, primary tumor growth, secondary tumor growth or tumor cell arrest. 

Zijlstra et al showed that the detachment of tumor cells is affected and that resulted in 

inhibition of metastasis in CD151 blocked cells. Margot Zöller speculated that the 

findings in Zijlstra et al is because the inability of CD151 antibody treated cells to recruit 

MMPs (on the primary site) that are required to degrade the ECM to invade the local 

stroma (reviewed in (104). On the other hand, Sadej et al showed that the CD151 

knockout breast cancer cells co-cultured with endothelial cells affected proliferation and 

angiogenesis in xenograft models but not in three-dimensional ECMs under standard 

culture conditions. This means that not only CD151 association with integrins is 

important in CD151 induced tumorigenesis, the interaction with the surrounding stroma 

is also important (117). Colocalization of CD151 with other tertraspanins is also variable 

in malignancies. For expamle CD151 was shown to colocalise with TSPAN8 and α6β4 

integrin resulting in augmentation of cell motility in human pancreatic adenocarcinoma 

(118). In contrast, in HCC CD151/integrin β1 complex drives the enhanced migration 

and invasion. Overexpression of CD151/integrin β1 complex in patients correlates with 

poor prognosis. Integrin β1 is expressed at high level in low invasive cells such as HepG2 

cell lines, however, overxpresion of CD151 increasead invasion of HepG2 cells, which 

suggests that the formation of CD151/integrin β1 complex is the critical regulator in 

invasion and migration of HCC (119). These findings further strengthen the complexity 

seen in tetraspanins that is mediated by the tetraspanin enriched microdomain (104). 
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• TSPAN8 (also known as CO-029/	  TM4SF3):  

     The first report implicating TSPAN8 in tumor metastasis was in colorectal cancer in 

1989 by Sela et al. (120). TSPAN8has been shown to complex with CD9, CD81, CD151 

and a number of integrins such as α3β1 and α6β4. The association of TSPAN8 with 

integrins can be distrupted with mild detergents suggesting a weak association. On the 

other hand, the association between CD151 and TSPAN8 is stronger.  

     The TSPAN8 induced migratory phenotype of cancer cells is mediated mainly through 

the association with α6β4. The increased motility is mediated by temporary 

internalization of CD151 and α6β4, by the tyrosine based internalization motif and PKC 

activation, that results in morphological changes toward the migratory phenotype (104, 

121, 122). Moreover, TSPAN8 has been shown to complex with EPCAM, EWI-F, PKC, 

CD13 and PI4KII (122). The association with EPACM has been shown to increase cell 

survival (104).  

     In HCC, TSPAN8 has been shown to correlate with poor differentiation and 

intrahepatic metastasis of hepatoma (123, 124). Similiary, in colona cancer TSPAN8 was 

upregulated in metastasized tumor as opposed to primary tumor (104). In esophageal 

cancer, TSPAN8 increases migration mainly via modulation and upregulation of 

ADAM12 expression (104). D6.1A (TSPAN8 homologue) knockout mice display 

disseminated intravascular coagulation (DIC). Angiogenesis was also shown to be 

mediated by D6.1A and is dependent on the association with α6β4 (104). The implication 

of TSPAN8 extends to embryonic development as it has been shown to be critical for 

dorsal-ventral pancreatic bud fusion in Xenopus laevis (125). Surprisingly, TSPAN8 

knockout mice showed reduced body weight, which implicates TSPAN8 in obesity (126). 
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Similar to other members of tetraspanins the ability of TSPAN8 to associate with various 

partners dictates its function and therefore TEM should be taken into account when 

analyzing tetraspanins (reviewed in (127)). 

 

 

1.6 Rational of the study:  

     Hepatocellular Carcinoma is a major worldwide illness and is resistant to conventional 

chemotheraputic strategies, which might be due to its inherent complexity and to the 

heterogeneity seen in HCC patients (4, 48, 50). Although surgical resection and liver 

transplantation provided promising results and increased survival in patients with early HCC, the 

majority of patients are diagnosed at late stage when prognosis is poor and conventional 

treatment options are limited and no longer effective (4). The introduction of molecular targeted 

therapy provided a new era for treating advanced HCC. Sorafenib, a multikinase inhibitor, 

increased the survival of advanced HCC patients by ~3 months (4, 51).   

     Thus far, the availability of systemic therapy is limited, which means that the need for 

characterization of additional molecular mechanisms driving the progression of HCC and that 

could be targeted for therapy is immense. Our lab had previously identified AEG-1 as an 

oncogene that is overexpressed with the stages and grades of HCC. Microarray studies of AEG-1 

overexpressing cells defined the set of genes deregulated by AEG-1. TSPAN8 that is known to 

be implicated in metastasis was upregulated significantly by AEG-1 (63, 104). The role of 

TSPAN8 in HCC is not fully understood. To our knowledge only two reports in the literature 

implicated TSPAN8 in HCC. The authors showed that TSPAN8 is overexpressed in metastatic 

tumor cell compared to non-metastatic tumor cells and when overexpressed in HCC cells it 
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enhances metastasis (123, 124). However, the molecular mechanisms behind this phenomenon 

are lacking. The aim of this study is to characterize TSPAN8, a downstream target of AEG-1, in 

the context of AEG-1 mediated metastasis and tumor progression. As a scaffold protein with no 

conventional domains or motifs, it is difficult to block AEG-1 with small molecule inhibitors. 

Identification and characterizations of downstream target of AEG-1 are necessary to develop 

insights for potential therapeutic targets.  

  

1.6.1 Aim 1: Analyze the role of TSPAN8 in mediating the oncogenic functions of AEG-1. 

 

 

 

 

 

  

      

      

 

     	  

Figure 15: 
• AEG-1-8 (A-8) and AEG-1-14 (A14) cell lines: Two clones of HepG3 cells stably 

overexpressing AEG-1 (63). 
• AEG-1-14AEG-1-8Knockdown of TSPAN8 will be performed using plasmids expressing 

shRNA for TSPAN8.  
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 Aim 2:  Investigate the mechanism by which AEG-1 regulates TSPAN8 expression. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16: A schematic diagram for Aim 2 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Cell lines and culture condition: 

Cells lines used in this study are AEG-1-8 and AEG-1-14, which are stable clones of HepG3 

cells overexpressing AEG-1 (63). The cell lines were cultured at 37°C, in a 5% CO2/95% 

atmosphere and cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing:  

 

 

Table 1: Contents of the DMEM media used in culture  
 

  

 
 

 

 

 
 
 

 
 
 
 
 

Contents Percentage/500 ml of DMEM 

Fetal Bovine Serum (FBS) from Sigma aldrich 10% 

Penicillin and streptomycin from Hyclone 1% 

Hygromycin 0.02% 

Ciprofloxacin 0.05% 



	   56	  

2.2 Construction of TSPAN8 knockdown stable cell lines: 

The plasmid expressing short hairpin RNA (shRNA) for TSPAN8 was obtained from Santa Cruz 

Biotechnology, Inc. The TSPAN8 shRNA plasmid contains three target-specific lentiviral vector 

plasmids each encoding 19-25 nucleotides (plus hairpin) and a puromycin resistant gene. The 

trasnfection of AEG-1-8 cell lines with TSPAN8-shRNA plasmid and the control shRNA 

plasmid was performed using Lipofectamine 2000 reagent (Invitrogen) according to the 

manufacturers protocol. Cells were selected in 10µg/ml of puromycin in same media conditions 

used in (63) for two weeks.  To ensure the establishment of stable knockdown clones (KDs), 

single colonies were isolated and maintained for 4 weeks in a DMEM media containing:  

 

Table 2: Content of DMEM media used for selecting stable TSPAN8 knockdown clones. 

 
 
 
 
Western blotting and Real Time PCR (RT-PCR) were used to screen clones with good 

knockdown of TSPAN8. 

 
 
 
 
 

Contents Percentage/500 ml of DMEM 

Fetal Bovine Serum (FBS) from Sigma aldrich 10% 

Penicillin and streptomycin from Hyclone 1% 

Hygromycin 0.02% 

Ciprofloxacin  0.05% 

10µg/ml of puromycin 0.0002% 
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2.3 Whole-cell lysates preparation and western blot analysis:  

Whole cell lysates were prepared as in (63); 5x10e5 cells were lysed using a lysis buffer from 

cell signaling (CATLOG# 9803) containing phosphatase inhibitors from Roche (PhosSTOP 

CATLOG# 04-906-837-001) and protease inhibitors from Roche (complete CATLOG# 11-836-

145-001) . Protein estimation was performed using Bio-Rad protein assay kit using the Bradford 

method (128).  For detecting TSPAN8 and AEG-1 100µg and 30µg of protein was loaded, 

respectively, and ran on an SDS-PAGE. 12% gel was used for TSPAN8 and 8% Gel was used 

for AEG-1.  

 

 

Table 3: preparation of polyacrylamide gel 

              Resolving gel                                       8%                                                12% 
Protogel 2.67ml 4ml 

Resolving buffer 2.6ml 2.6ml 
Water 4.62ml 3.29ml 

10% APS 100µl 100µl 
TEMED 10µl 10µl 

 

Stacking gel 
Protogel 1.3 

Stacking buffer 2.5 
Water 6.1 

10%APS 50µl 
TEMED 10µl 

 
 
 
The primary antibodies used were anti-AEG-1 (1:500; chicken polyclonal) and anti-TSPAN8 

(1:1000 rabit;Sigma-Aldrich). After transferring to a nitrocellulose membrane and blocking for1 

hour, the blots were incubated in the primary antibodies overnight in blocking buffer (5% dry 

non fat milk in TBST) as recommended by the manufacturer.  
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Secondary antibodies used for anti-AEG-1 and anti-TSPAN8 were (1:1000; anti-chicken) and 

(1:1000; anti-rabbit), respectively. Blots were stripped and equal loading was checked using anti-

EF1-α  antibody.  

 
 
2.4 RNA extraction and Real time PCR:  

Total RNA was extracted from 5x10e5 cells using QIAGEN miRNeasy Mini Kit (QIAGEN) 

according to the manufacturer’s protocol. After measuring the RNA concentration using a 

spectrophotometer, 2µg/µl of RNA was used for cDNA preparation. cDNA synthesis was 

performed according to the manufacturer’s protocol using high capacity cDNA reverse 

transcription kit from Applied Biosystems. Real-time PCR was performed using Applied 

Biosystems ViiA7 Fast Real-Time PCR System and TaqMan Gene Expression Assays for 

TSPAN8 according to the manufacturer’s protocol. 

             Table 4: Amounts required for one reaction for synthesis of cDNA Lot# 1204164.  

cDNA synthesis (kit) 

25X dNTP (100mM) 0.8µl 

Reverse transcription buffer  2.0µl 

10X Random primers 2.0µl 

Reverse Transcriptase (50Units/µl) 1.0µl 

RNA 2µg/10µl 

Nuclease –free water 4.2µl 

 
Table 5: Amounts required for one reaction of RT-PCR  
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RT-PCR reaction 

Taqman master mix 10µl 

Nuclease free water 7.5µl 

cDNA 1.5µl 

Probe 1µl 

 

 
 
 

2.6 Colony formation assay: 

Colony formation was performed as in (63). One thousand cells were plated on 6 cm dishes (4 

dishes per group). Plates were incubated for two weeks till colonies were visible. After that, cells 

were fixed by directly adding 500µl of 37% formaldehyde (from Sigma Aldrich) to the media for 

30 minutes. Cells were carefully rinsed with distilled water and 3ml of 10% giemsa (in PBS) was 

added and plates were incubated for 4 hours. Finally, cells were carefully rinsedand allowed to 

dry overnight. Colonies >50 cells were scored.  

 

 

2.7 Matrigel Invasion assay:  

Invasion assay was performed using 24-well BioCoat cell culture inserts (BD) with an 8-µ–

porosity polyethylene terephthalate membrane coated with Matrigel Basement Membrane Matrix 

(100 µg/cm2; BD). The procedure was followed as in (63). 
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2.8 Migration assay:  

Migrations assay was performed as in (93) with few modifications. 5x10e4 cells were plated on 6 

well plate. Culturing conditions were same as in (63). Cells were allowed to grow till reaching a 

confluency of 80% to 90%. Then cells were scratched with a pipet tip and observed at 0 hours 

and 48 hours using a bright-field microscope. 

 

2.9 Actin staining: 

Rhodamine phalloidin from Invitrogen, which was developed by (130), was used. The staining 

procedure was according to the manufactures with one modification, 4% paraformaldehyde 

solution in PBS was used instead of 3.7% formaldehyde. Briefly, 1x10e4 cells were plated on 

chamber slide and allowed to grow till reaching a confluency of 80% to 90%. Cells were 

scratched and after 24 hours cells were stained with Rhodamine phalloidin. The images were 

analyzed using a Zeiss confocal laser-scanning microscope at the VCU Department of 

Neurobiology and Anatomy Microscopy facility supported, in part, with funding from NIH-

NINDS Center core grant 5P30NS047463.  

 

 

 

2.10 Co-culturing with Human Umbilical Vein endothelial cells (HUVEC): 

Tube formation by HUVECs was performed using a Cultrex basement membrane extract (R&D 

Systems) as recommended by the manufacturer. HUVECs were obtained from Lonza and 

maintained according to the manufacturer’s protocol in endothelial cell growth medium-2 

(EGM-2). The experiment done as described in (102) with few modifications, 4x10e4 of 
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HUVECs were co-cultured with 10,000 , 5,000 and 1,000 of AEG-1-8 and TSPAN8 knockdown 

clones in  EGM-2 for 4 hours then tube formation was analyzed using a bright-field microscope.  

 

2.11 Orthotopic xenograft in nude mice: 

Cells were orthotopically implanted by intrahepatic injection in athymic nude mice (6-8 weeks of 

age). The mouse was placed into a plexiglass chamber for induction of anesthesia with 2% 

isoflurane and 2-liters/min oxygen flow for a mouse of 25 g body weight. After anesthetization, 

the animal was transferred onto a Styrofoam pad and anesthesia was maintained by isoflurane 

inhalation through a suitable mouthpiece. The mouse was placed in the left lateral decubitus 

position and the skin was disinfected with betadine/ethanol scrub. A small skin and muscle 

incision (about 0.5-1 cm long) was made longitudinally (parallel to the spine) in the right flank to 

expose the liver. The liver was retracted and using a 30G needle 1 X 106 cells in 0.1 ml PBS was 

injected into the parenchyma of the liver. A visible pale wheal indicated a successful injection. 

The needle was retracted and a Q-tip was placed over the injection site for 30 seconds to prevend 

bleeding and spillage of material. The liver was returned to the peritoneal cavity. The peritoneum 

was closed with a 5-0 suture and the skin was closed by using wound clips. After closing the 

abdomen the skin was wiped surrounding the suture with betadine and the animal was placed on 

a warming pad for recovery. The animals were monitored by measuring body weight and 

observing posture, feeding and grooming behavior. The animals were sacrificed eight weeks 

after the implantation, and burden was calculated by the sum of all metastatic lesions multiplied 

1x (micro), 2x (small) and 3x (large).  
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2.12 TSPAN8 promoter cloning:  

     20 µg of human male genomic DNA from Promega (CATLOG# G1471) was used, and 

digestion of genomic DNA was performed using XhoI.. Appropriate primers were used to isolate 

the promoter region (Table 6) and Taq PCRx kit from Invitrogen.Inc was used for performing the 

PCR, 1Kb plus ladder from invitrogen was used. BLAST search confirmed that the primers are 

unique. Cloning of the promoter was performed as in (95). To assess the efficiency of cloning the 

promoter, miniprep kit from QIAGEN was used after the transformation ligation reaction of the 

pGEM®-TEasy vector into DH5α competent cells from Promega; transformation was performed 

according to the manufacturer protocol.  

TABLE 6: Designed primer used for the isolation of TSPAN8 promoter region. Bold 

nucleotides are digestion sites for restriction enzymes used. 

Primer Primer Sequence (5’-3’) 

TSPAN8 promoter Forward with Nhe1 site GCTAGCGCTAAGGCAGAGAGGAAC 

TSPAN8 promoter Reverse with Xho1 site. 

Located in non-coding exon. 

   CTCGAGGCTTGTCATAGCTCCTGG 

TSPAN8 promoter Forward without Nhe1 site GGAGAAACTGCCAGGGAAAT 

TSPAN8 promoter Reverse without Xho1 site. 

Located in the first intron   

CGCAAAGGCTATTAACCCAC 

  

Bioinformatics analysis showed that TSPAN8 has a promoter of 2KB in length and does not 

contain Xho1, Nhe1 and EcoRI sites. The following sequence is the sequence of promoter:  

TCAATAAGTATTTCTCAAAAAGAATTTTAAAGTGCTAAGGCAGAGAGGAACTGGG

AGAAACTGCCAGGGAAATTAATTCTCATTCTATTGACACAGCTCAAGTAAGAAATG
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ATAAAGGACTGAATAATGAAATGCAAAAGGATGAGATGGAAGAAATAGTTTTGACA

GTAATTTAGGAGCTACACAGACCAGTAAGAGTGATTGGATGGAAAGAAAGAGAAAT

ACAAAATATCTGTACAAATTCAGCCTGGGAGAGTGTTGTGTGATTATAACATTAATA

GGAATAGGAATTTCCAGGAGTGAACTGTTTCATATAGGTTTTGAATTAGACTAGGGG

TTCTATTACACAGTCATTCTCCTGTACAAACACATCCATTGATTTTTGTGTTACAGAG

TTCAAGAGTGATTCAACTAAAGACTACACAGTATTCTTTTTAAGGATGTTCAGCATC

CACCAAAATATCTATTTCAAACTAAAATTTGGTAGTATTCAATACATTCTTTTCAACA

AAGCAGCATTTAAATCTGTAATTTTTTTTTAATTTTAGCCTCTGATAAATAATCATTT

CTGGGACTATGAATCAATTTTGGTTTTCATTCAATCTGAAATTATTCTTTCAGCCTTG

GATTATTCTATATACAAAATATCTCAATAGAAGGTTGTGAAACTATCCATTTTCTAGT

AGGAAAGAGAACACAAACAATTTTAGTGATGATTTATATATTAAGCCATTATTTTTG

GAATTAATCCTAAATTTGGCCTTTAACGCTATATATTATTGTTGATAATGCATTAAAA

TATATTGTATTTGTAGTCAGGGAGTAGAATTGTTTCAAAAACATTGTATGCCAGTGA

AAATTAGAAATAATATTTTTCTTTTGTAAGGAGTTCATGCTTGCTTATCGTGTAAAAC

TTAGCAAAGATTCTAAAGAATAATTTTCTCAACAACCTTTTAAAGTAGAGGGTTCTT

TTATTTAGGGGGAGAAGAACTCCCTTTGAGAGGCAGGATGTGGAAACTAACATGAC

CCAGGCTGTTTACACAAAGCAGTCCACACCTCCCTGATGATGTCGGAGCATTTTGCC

TTTACCTGAGACAGCTGCCTTCTATTAGCACTAGAAACAAATAGTAAAATCTATGGT

CACTGATCCATGACCACCTTCCCATTTTGAATTTTTTTGTCCGGGAGGACCTGGAATC

CAGAAACTGAGTTGGTGGAGAACAGCTGTTGCTAGATACAATTTATCAGAGGAAGG

AAATTACAGTGTCCACCTTAAAAACAAACCAAGCTATCAGAATGACTACGCATTATA

AAATGAAAACAATGTTGCAGTCAGTGCCACTTTATGATTTCTTTCCCTTTGTATCATA

AAGAAATAAAGATAAAAAGCAAATGGTCTTATCATGATAGGCAAGGCTGCCTCTCC
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CTCTGCAATTTCTGTGGTGTATTTACGGCAGCTCTGGAATTCTTTTGAAATAAATTTA

GATGTTTTGGAGGGCAGATACATGTAATGGTTATTTTACTATTCTAGGTTTAATGATA

ACAGGTTGCTATGTCTAAGCTTTGATATTTTGCAGATTTCTAAATGCATTTTATTGCA

TTTAGAAGGAATTTTGTAGTATTGAGAAAATGCAATGCAAAAATGAGTAGAGATAC

AATGTCCATTTAACTCAGAACAAAACAACCTTATTTCCCCATAGTTGAAATGGAGGG

CGGGGAAGTCAGGCAGTGGTTTCTGAAAGCCAAGAACTTAGTAGCACTGTGCCATT

CTCTTGCCTGATCCAGTGCCATTCCCTTCACTTGATATCTGTTTACTTTAGAGGAGGC

AGTTTTTGAGAAAGGATCATAAATATCCTGGCCCAGTGCCCCAGGAGCTATGACAA

GCAAAGGAACATACTTGCCTGGAGATAGCCTTTGCGATATTTAAATGTGTGAGTTAA

TAGCCTTTGAGATATTTAAATGTGTGGGTTAATAGCCTTTGCGATATTTAAATGTG

TGGG 

 

• Colored bold nucleotides are positions of the primers used in this study.  
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CHAPTER 3: RESULTS AND DISSCUSSION 

 

3.1 Establishment of stable TSPAN8 knockdown clones: 

     We have previously shown in a microarray study that AEG-1-8 and AEG-1-14 cells 

compared to pc-4 cells (control clone transfected with an empty plasmid in HepG3 background) 

display more than 25 fold change in upregulation of TSPAN8 (Table 7) (63). To confirm the 

hypothesis that AEG-1 might upregulate TSPAN8, we first checked the basal expression of 

TSPAN8 in a number of cell lines, namely, pc-4, AEG-1-8, AEG-1-14 and si-AEG-1 (HepG3 

cells trasfected with short-interfering-RNA against AEG-1) by Western blot analysis (Figure 17; 

a). Both AEG-1-8 and AEG-1-14 clones showed significantly higher levels of AEG-1 and 

TSPAN8 compared to pc-4 and siAEG-1 clones indicating that TSPAN8 expression might be 

regulated by or correlate with AEG-1. 

     To analyze the role of TSPAN8 in mediating AEG-1 function, we established TSPAN8 stable 

knockdown clones in AEG-1-8 background by transfection with a plasmid expressing TSPAN8 

shRNA and selecting in the presence of puromycin for 2 weeks. Individual clones were 

amplified and screened by Western blotting and Taqman RT-PCR. Clones 9 and 10 (T9 and T10) 

and control clone 17 (C17 expressing control scrambled shRNA) were chosen for subsequent 

experiments based on TSPAN8 expression level (Figure 17;b and c). 
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Figure 17:  
Establishment and screening of stable TSPAN8 knockdown clones. a) Basal expression of 
TSPAN8 in AEG-1-8 (A-8), SiAEG-1 (knockdown clone of AEG-1), PC-4 and AEG1-14 (A-
14). b) Western blot of AEG-1-8 (A-8) of stable knockdown clones. c) RT-PCR for TSPAN8 
expression level in AEG1-8 stable knockdown clones. Results were normalized against GAPDH 
as an endogenous control. 
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Table 7: 
 The set of deregulated genes by overexpression of AEG-1. Table is from (63). 
 
 
 
 
3.2 TSPAN8 knockdown clones have reduced proliferation: 

     Given the observation that tetraspanins in general are capable of associating with a variety of 

membrane and cytosolic proteins allowing them to regulate tumor cell growth, invasion, 

migration and metastasis (104), we tested if proliferation is affected in TSPAN8 knockdown 

clones compared to the parental clone (AEG-1-8).  TSPAN8 has been previously implicated in 

promoting metastasis but not proliferation in a number of malignancies including HCC. 

However, the role of TSPAN8 is not well understood in HCC (104, 124).  

     To check for proliferation, we performed colony formation assay. Proliferation is significantly 

reduced in the knockdown clones (T9 and T10) as they have more than 50% less colonies 

compared to the parental (AEG-1-8) and control (C-17) clones.  
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Figure 18: 
Knockdown of TSPAN8 in AEG-1-8 cells reduces proliferation. Colony formation assay each 
group is a representative of 4 samples. *: Indicates a p-value of less than 0.05 between AEG-1-8 
(A8; parental cell) and knockdown clones, and between CON-17 (control clone) and knockdown 
clones. The difference between A8 and CON-17 is not statistically significant. 
 
 
 
 
 



	   69	  

3.3 Knockdown of TSPAN8 reduces migration and invasion: 

     Increasing evidence suggests the involvement of TSPAN8 in mediating tumor invasion and 

metastasis (104). In melanoma for example, overexpression of TSPAN8 correlated with an 

invasive phenotype in a number of melanoma cell lines. Experimental knockdown of TSPAN8 in 

metastatic melanoma cells decreased their invasive ability when plated on Matrigel (131). In 

HCC, the involvement of TSPAN8 in metastasis is not well understood. To our knowledge only 

two reports in the literature implicated TSPAN8 (formerly known as CO-0029) in metastasis 

demonstrating that increased expression of TSPAN8 was associated with intrahepatic metastasis. 

However, functional analysis on the role of TSPAN8 in HCC is lacking (123, 124). Moreover, 

the contribution of TSPAN8 in mediating the oncogenic function of AEG-1 is also not known. 

     To test whether TSPAN8 mediates AEG-1-induced enhancement in migration and invasion, 

we performed scratch assay and Matrigel invasion on AEG-1-8 (parental cell line), T9, T10 

(knockdown clones) and control clone C17. Results show that knockdown of TSPAN8 abrogated 

cell migration. T10 and T9 clones migrated ∼31% and ∼13% of the distance compared to 0 

hours, respectively. On the other hand, AEG-1-8 and C17 migrated 69% and 50% of the distance 

compared to 0 hours, respectively (Figure 19; a). Matrigel invasion assay showed that 

knockdown of TSPAN8 reduced invasive ability of cells 24hrs after plating on  Matrigel. Results 

show that the number of T10 and T9 cells that crossed the matrigel are significantly reduced 

compared to AEG-1-8 and CON-17 cells.  

      We next asked whether the reduction in migration and invasion in knockdown clones is 

because of reduction in the formation of lamellipodia since that TSPAN8 is a transmembrane 

protein that was previously shown to localize at the lamellipodia (104, 121, 132). We stained the 

cells for actin cytoskeleton to detect lamellipodia While AEG-1-8 and C17 cells showed ruffled 
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membrane with lamellipodia, the membrane of T9 and T10 cells were blunted in appearance 

(Figure 19 c; arrow). 

 
a) 
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b) 
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c)  
 
 
 
 
 
 
 
 
 
 
       
                                                           
                                                              
                                                                  
  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Figure 19: 
 Effect of TSPAN8 knockdown on migration and invasion of cells. a)  Scratch assay at 0 Hrs and 
48 Hrs. Each group is a representative of 2samples; 3 readings at different sites. *: Indicates a p-
value of less than 0.05 between AEG-1-8 (A8; parental cell) and knockdown clones, and 
between CON-17 and knockdown clones. The difference between AEG-1-8 and CON-17 is not 
statistically significant. b) Matrigel invasion chamber assay. Each group is a representative of 2 
samples; 4 readings at different sites. . *: Indicates a p-value of less than 0.05 between  AEG-1-
8 and (A8; parental clone) and knockdown clones, and between CON-17 and knockdown 
clones. The difference between AEG-1-8 and CON-17 is not statistically significant. c) Actin 
staining using confocal microscopy at magnification of 100X.  
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3.4 Knockdown of TSPAN8 reduces endothelial cell activation (HUVECs): 

     One major funciton of TSPAN8 is regulation of angiogenesis. Overexpresion of D6.1A 

(mouse homologue of TSPAN8) in low metastatisizing pancreatic adenocarcinoma cells induced 

disseminated intravascular coagulation (DIC), and (AS) increased metastasis as well as increased 

hemorrhage around tumors upon establishment of xenografts in syngeneic mice (133). Recently, 

TSPAN8 secreted exosomes were shown to induce endothelial cell activation through induction 

of several pro-angiogenic proteins such as VEGF and von Willebrand factor in rat pancreatic 

carcinoma model. In general, the involvement of TSPAN8 in angiogenesis in cancers and in 

HCC in particular is still not well understood. To our knowledge there are no reports that 

implicated TSPAN8 in angiogenesis of HCC.   

     AEG-1 profoundly augments tumor angiogenesis and we hypothesized that overexpressed 

TSPAN8 in the membrane of AEG-1 overexpressing cells might facilitate interaction with 

endothelial cells and their differentiation. To test this hypothesis, we co-cultured 10,000, 5,000 

and 1000 AEG-18, T10 or T9 cells along with with 4x10e4 of HUVECs and analyzed 

differentiation by measuring tube formation. Results show that knockdown clones have 

significantly reduced number of tubes compared to AEG-1-8 clone(Figure 20). We also collected 

conditioned media from AEG-18 and TSPAN8 knockdown clones and cultured HUVECs in the 

presence of the conditione media. However, no significant difference was observed in tube 

formation (data not shown).  These findings indicate that physical interaction between TSPAN8 

in tumor cells with endothelial cells might be required for activation of endothelial cells by 

AEG-1.  
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Figure 20: 
Co-culture of HUVECs with A8 and knockdown clones (T10 and T9). Each group represents co-
culture of (10,000, 5,000, 1000) cells of parental and knockdown clone; each number of cell has 
two samples and reading from 2 different sites. *: indicates a p-value of less than 0.05 between 
AEG-1-8 (A8; parental cell) and knock down clones.   
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3.5 TSPAN8 knockdown clones have reduced intrahepatic metastasis in-vivo: 

To check the role of TSPAN8 in AEG-1-mediated metastasis in-vivo, we established orthotopic 

xenografts in the livers of athymic nude mice using AEG-1-8, T10, T9 and C17 clones. Mice 

were followed for 8 week. Results show that knockdown clones have reduced intrahepatic 

metastasis and reduced tumor size compared to AEG-1-8 and C17 clones (Figure 21). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21:  
Orthotopic injection of AEG-1-8 and TSPAN8 knockdown clones. Each group is representative 
of 4 mice. 
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3.6 Cloning of TSPAN8 promoter region:  

                Overexpresion of AEG-1 causes upregulation of TSPAN8 at the mRNA level (63, 98). To test 

whether AEG-1 upregulates TSPAN8 at the transcriptional level, we attempted to clone the 

promoter region of human TSPAN8 gene for further experimentation to identify the essential 

elements in the promoter region of TSPAN8 gene for regulation by AEG-1.  

                 Human genomic DNA was used as template to clone ~2kb region of TSPAN8 promoter by 

PCR. A single band corresponding to the expected size was generated by PCR (Figure 22; a).  

The PCR product was ligated into pGEM®-TEasy vector. Upon transformation into DH5α 

competent cells random colonies were picked, the plasmid DNA was extracted and the presence 

of the insert was screened by digestion with XhoI and NheI.  

                Even though a 2kb band was detected upon digestion, sequencing of the plasmid DNA did not 

reveal the presence of the expected TSPAN8 promoter sequence in the constructed clones. 

(Figure 22;b). In another attempt we used different set of primers without adding the XhoI and 

NheI sites. Even though we obtained a PCR product of the expected size (data not shown), 

cloning the PCR product into pGEM®-TEasy vector and subsequent sequencing still did not 

reveal TSPAN8 promoter sequence. It is anticipated that there might be problems with ligation 

that might interfere with the cloning of the promoter. Using new ligation kit still did not resolve 

the problem. Attempts are being made with new primers and new ligation kit to clone the 

TSPAN8 promoter.    
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Figure 22:  
Gel electrophoresis for extracted DNA from a cloning attempt of TSPAN8 promoter. a) 2Kb 
isolated band after digestion of human genomic DNA and use of appropriate primers. b) 
Screening of transformed colonies; Bands extracted from 9 randomly selected transformed 
colonies.  
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3.7 Discussion: 

     Hepatocellular carcinoma (HCC) is a devastating form of liver cancer with dismal prognosis 

and a five-year survival of less than 12% in the United States (2, 4). This is because of metastasis 

and lack of systemic effective therapeutic strategies. The heterogeneity seen in HCC patients 

might explain the inherent complexity of the illness. Available data demonstrates the difficulty of 

designing a drug that works for all patients as every patient has a genetic signature that is 

different than the other. This suggests that the pathogenesis driving the progression of HCC is 

still puzzling. To solve the puzzle, we need to further characterize the molecular mechanisms 

behind the development of HCC to obtain insights into potential therapeutic targets that in turn 

will help to develop diagnostic markers and therapeutic profiles for the use of personalized 

medicine (4, 36).  

     We, in previous studies, have identified AEG-1 as a major protein regulating the development 

and progression of HCC (63).  Overexpression of AEG-1 was seen in late stage HCC and was 

seen to cross talk with a number of pathways modulating major hallmarks of cancer that drive 

tumorigenesis and complicates the use of available treatment strategies such as surgical resection 

in late stage HCC with metastasis.  In a microarray study, TSPAN8 was shown to be upregulated 

in AEG-1 overexpressing cells (AEG-1-14 and AEG-1-8), (Table 6), and AEG-1 transgenic mice 

(98). TSPAN8 is from the family of transmembrane proteins that cross the membrane 4 times. 

TSPAN8 is classified as a metastasis promoting tetraspanin as it was shown in recent reports to 

be overexpressed in metastasizing tumor but not primary tumor (104). Moreover, experimental 

overexpression of TSPAN8 in non-metastatic pancreatic cell lines augmented metastasis (126).  

     In this study we analyzed the role of TSPAN8 in AEG-1 mediated tumor progression. Since 

TSPAN8 is associated with metastasis, we were interested in cellular events that mediate 
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metastasis (104). Experimental knockdown studies provided clues to investigate the function of 

proteins of interests and the function of tetraspanins (104, 134). Therefore, to understand the role 

of TSPAN8 in AEG-1 mediated oncogenesis, we looked at migration, invasion and Human 

Umbilical Vein Endothelial cells (HUVECs) activation in AEG-1-8 cells with stable knockdown 

of TSPAN8. Our results show that the knockdown of TSPAN8 reduced migration, invasion, 

endothelial cell activation and in-vivo intrahepatic metastasis. Knockdown of TSPAN8 

abrogated cell motility (migration). Both T9 and T10 clones displayed ~50% reduction in 

motility. This result is consistent with reports of TSPAN8 mediating cell migration (104, 126, 

135). The potential mechanism underlying this observation is that the knockdown of TSPAN8 

abrogates the ability of TSPAN8 to recruit key interacting protein to the tetraspanin enriched 

microdomain by which tetraspanin can modulate various biological processes such as migration, 

cell contact and cell fusion and many other processes (98). Integrins, for example, are non-

tetraspanin interacting protein that are found to complex with the TEM and to implicate motility 

and migration (119). The associaton of  tetraspanins with integrin partners is diverse and leads to 

changes in adhesive and migratory phenotype. In some tetraspanins, such as CD9, the pro or anti 

migratory effects is dependent on the type of integrins that are associated. TSPAN8 has been 

shown to mainly associate with α6β4 integrin (104, 136). Recnlty, in colon cancer the ability of 

TSPAN8 to switch between α1β1 to α2β1 was shown to enhace motility of highly invasive 

colon cancer cells (ovexpression of TSPAN8) compared to less invasive colon cancer cells.; the 

switch was thought to be mediated by silencing of E-cadherin/p120ctn (137). The mechanism by 

which TSPAN8 in our model associates with integrins is still need to be elucidated.We do not 

know what type of integrins are associated with TSPAN8 in our model and further experiments 

are required to idntify the associating integrins. Similarly, the ability of the TSPAN8 knockdown 
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cells to invade into matrigel was significantly reduced. T10 and T9 clones displayed more than 

70% reduction in invading cells compared to parental cells and control clone. Tetraspanins in 

general were shown to mediate invasion through their ability to associate MMPs in the TEM. 

This association facilitates matrix degradation (104). Association of TSPAN8 with ADAM12 

promotes metastasis through degradation of ECM in eosophigal cancer (135). The abrogation of 

invasion in  TSPAN8 knockdown clones was consistant with the role of TSPAN8 in invasion of 

melanoma (131). The most striking feature of AEG-1 is that it robustly promotes invasion (138). 

The observation that TSPAN8 knockdown profoundly abrogates AEG-1-induced invasion 

indicates that TSPAN8 might be a key molecule mediating AEG-1-induced invasion.  

   Interestingly, in contrast to other studies, our results also showed that proliferation was also 

affected in TSPAN8 knockdown clones indicating that the consituents of the TEM in the 

contexts of HCC might be different from that of melanoma. This finding further extends the 

importance of analyzing the TEM as a whole. The mechanism by which knowckdown of 

TSPAN8 affected invasion and proliferation is still not fully understood and further expermients 

are required to identify the possible interacting partners. The alteration in the balance of MMPs 

has also been shown to promote angiogenesis. TSPAN8 dervived exosomes induced 

upregulation of pro-angiogenic factores in rat models and activation of endothelia cells (139, 

140). Although the endothelia cell activation was not seen to be affected when we used 

conditioned media from knockdown and parental cell (data not shown), the co-culturing of the 

knockdown cells with HUVECs affected the activation suggesting that the interaction between 

tumor cells and the endothelial cells was affected. The cell-cell interaction hypothesis is 

consistent with the reported functions of TSPAN8 in development as the knockdown of TSPAN8 

(Tm4sf3 ) affected the fusion of the dorsal and ventral bud in Xenopus laevis (125). We further 
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show that the effect of knockdown of TSPAN8 on metastasis stands true in-vivo. Knockdown 

clones have impaired intrahepatic spreading compared to control and parental cells.  

     Current microaray data from our laboratory suggests the regulation of TSPAN8 by AEG1 at 

mRNA level (63, 98). We speculated that AEG-1 reguates TSPAN8 through interplaying with 

the transcriptional machinery or through the post transcriptional machinery. AEG-1 either might 

activate specific transcription factors regulating TSPAN8 transcription. Alternatively, AEG-1 

might directly regulate transcription of TSPAN8. AEG-1 has 3 nuclear localization signals and 

translocates to the nucleus acting as a coactivator of NF-κB by interacting with CBP to induce 

expression of IL-8 (93). Additionally, AEG-1 also interacts with CBP and the transcriptional 

repressor YY1 to inhibit transcription of the astrocyte specific glutamate transporter, EAAT2 

(53). AEG-1 interacts with the transcription repressor PLZF and squelches it away from the c-

myc promoter thereby augmenting c-myc transcription (88). Thus a direct regulation of TSPAN8 

transcription is plausible. 

     However, AEG-1 has been shown to localize predominantly in the cytoplasm in cancer cells, 

including HCC, as well as in a transgenic mouse with liver-specific expression of AEG-1, 

regulating translation and miRNA function (88, 98). Thus, posttranscriptional regulation by 

increasing mRNA stability and/or by altering levels of miRNAs that regulate TSPAN8 might be 

possible mechanisms. More in-depth analysis is required to dissect the molecular mechanism by 

which AEG-1 regulates TSPAN8 expression.   

 Our results in this study further strengthen the rationale of using TSPAN8 as a diagnotsic 

marker and potential theraputic target. Animal studies have shown that antibodies against 

TSPAN8 were efficient in abrogating the internalization of TSPAN8 complex and hence 



	   82	  

inhibiting the migratory phenotype (104). Whether this strategy could be used for therapy 

remains to be elucidated. 
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